a,giá trị tuyệt đối của x^2-x=-2x b,12x^2 -24x+9 16/07/2021 Bởi Alexandra a,giá trị tuyệt đối của x^2-x=-2x b,12x^2 -24x+9
`//x^2-x//=-2x` ta có : `//x^2-x//≥0` `⇒-2x≥0` `⇔x≤0` vì `x≤0` `⇒x^2-x=-2x` `⇔x^2+x=0` `⇔x(x+1)=0` `⇔`\(\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.\) Bình luận
Đáp án: b) \(\left[ \begin{array}{l}x = \dfrac{1}{2}\\x = \dfrac{3}{2}\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)\left| {{x^2} – x} \right| = – 2x\\ \to \left[ \begin{array}{l}{x^2} – x = – 2x\left( {x \le 0} \right)\\{x^2} – x = 2x\left( {x > 0} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}{x^2} + x = 0\\{x^2} – 3x = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x\left( {x + 1} \right) = 0\\x\left( {x – 3} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 0\\x = – 1\\x = 3\end{array} \right.\\b)12{x^2} – 24x + 9 = 0\\ \to 12{x^2} – 6x – 18x + 9 = 0\\ \to 6x\left( {2x – 1} \right) – 9\left( {2x – 1} \right) = 0\\ \to \left( {2x – 1} \right)\left( {6x – 9} \right) = 0\\ \to \left[ \begin{array}{l}x = \dfrac{1}{2}\\x = \dfrac{3}{2}\end{array} \right.\end{array}\) Bình luận
`//x^2-x//=-2x`
ta có :
`//x^2-x//≥0`
`⇒-2x≥0`
`⇔x≤0`
vì `x≤0`
`⇒x^2-x=-2x`
`⇔x^2+x=0`
`⇔x(x+1)=0`
`⇔`\(\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.\)
Đáp án:
b) \(\left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = \dfrac{3}{2}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left| {{x^2} – x} \right| = – 2x\\
\to \left[ \begin{array}{l}
{x^2} – x = – 2x\left( {x \le 0} \right)\\
{x^2} – x = 2x\left( {x > 0} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
{x^2} + x = 0\\
{x^2} – 3x = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x\left( {x + 1} \right) = 0\\
x\left( {x – 3} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
x = – 1\\
x = 3
\end{array} \right.\\
b)12{x^2} – 24x + 9 = 0\\
\to 12{x^2} – 6x – 18x + 9 = 0\\
\to 6x\left( {2x – 1} \right) – 9\left( {2x – 1} \right) = 0\\
\to \left( {2x – 1} \right)\left( {6x – 9} \right) = 0\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = \dfrac{3}{2}
\end{array} \right.
\end{array}\)