a) Khảo sát và vẽ đồ thị hàm số y=x3+3×2-4
b) Viết phương trình tiếp tuyến của đồ thị tại điểm uốn.
c) Chứng minh rằng điểm uốn làm tâm đối xứng của đồ thị.
a) Khảo sát và vẽ đồ thị hàm số y=x3+3×2-4
b) Viết phương trình tiếp tuyến của đồ thị tại điểm uốn.
c) Chứng minh rằng điểm uốn làm tâm đối xứng của đồ thị.
Đáp án:tham khảo nhé bn
Lời giải:
a) TXĐ: R
y’>0 trên khoảng (-∞; -2)và (0; +∞)
y'<0 trên khoảng (-2; 0)
+ yCĐ = y(-2) = 0; yCT = y(0) = -4
+ limx→-∞y = -∞; limx→+∞ y = +∞
+ y” = 6x+6 = 6(x+1) = 0 ⇔ x = -1
Bảng xét dấu y’’
X-∞-1+∞Y’’-0+Đồ thịLồiđiểm uốn U(-1; -2)lõm
Hàm số lồi trên khoảng (-∞; -1)
Hàm số lõm trên khoảng (-1; +∞)
Hàm số có 1 điểm uốn U(-1; -2)
Bảng biến thiên:
Đồ thị
Đi qua điểm (1; 0) và (-3; -4)
b) Hàm số y = x3+3x2-4 có điểm uốn U(-1; -2)
Ta có: y’ = 3x2 + 6x; y’(-1) = -3
Phương trình tiếp tuyến tại điểm uốn U(-1; -2) có dạng
y-y0=y'(x0)(x-x0)
⇔ y+2=-3(x+1)
⇔ y=-3x-5
Vậy phương trình tiếp tuyến tại điểm uốn là: y = -3x – 5.
c) Cách 1. Đồ thị nhận U(-1; -2) là tâm đối xứng khi và chỉ khi:
f(x0+x)+f(x0-x)=2y0 với ∀x
⇔ f(x-1)+f(-x-1)=-4 ∀x
⇔ (x-1)3+3(x-1)2-4+(-1-x)3+3(-1-x)2-4 =-4 ∀x
⇔ x3-3x2+3x-1+3x2-6x+3-4-1-3x-3x2-x3+3+6x+3x2-4=-4 ∀x
⇔ -4 = – 4 ∀ x
⇒ I(-1; -2) là tâm đối xứng của đồ thị.
Cách 2. Gọi U(-1; -2) là tọa độ điểm uốn, tịnh tiến OU giữa các tọa độ cũ.
Theo công thức đổi trục tọa độ
Phương trình trở thành Y = X3-3X đây là hàm số lẻ nên đồ thị nhận điểm uốn làm tâm đối xứng ⇒ điều phải chứng minh.
Giải thích các bước giải: