a) p = 1 + 9/45 + 9/105 + 9/189 + … + 9/29997 22/07/2021 Bởi Ayla a) p = 1 + 9/45 + 9/105 + 9/189 + … + 9/29997
Lời giải: $P=1+\dfrac{9}{45}+\dfrac{9}{105}+…+\dfrac{9}{29997}$ $P=1+\dfrac{3}{15}+\dfrac{3}{45}+…+\dfrac{3}{9999}$ $P=1+\dfrac{3}{3×5}+\dfrac{3}{5×7}+…+\dfrac{3}{99×101}$ $P=\dfrac32\left(1-\dfrac13+\dfrac13-\dfrac15+…+\dfrac1{99}+\dfrac1{100}\right)$ $P=\dfrac32\left(1-\dfrac1{100}\right)=\dfrac{150}{101}$ Bình luận
P = 1 + `9/45` + `9/105` + `9/189` + … + `9/2997` P = 1 + `3/15` + `3/35` + `3/55` + …. + `3/9999` P = `3/1` x 3 + `3/3` x 5 + `3/5` x 7 + `3/11` x 5 + … + `3/99` x 101 P = `3/2` x ( `2/1` x 3 + `2/3` x 5 + `2/5` x 7 + `2/11` x 5 + … + `2/99` x 101 ) P = `3/2` x ( 1 – `1/3` + `1/3` – `1/5` + `1/5` – `1/7` + `1/7` – `1/11` + …. + `1/99` – `1/101` ) P = `3/2` x ( 1 – `1/101` ) P = `3/2` x `100/101` P = `150/101` `#cactus` Bình luận
Lời giải:
$P=1+\dfrac{9}{45}+\dfrac{9}{105}+…+\dfrac{9}{29997}$
$P=1+\dfrac{3}{15}+\dfrac{3}{45}+…+\dfrac{3}{9999}$
$P=1+\dfrac{3}{3×5}+\dfrac{3}{5×7}+…+\dfrac{3}{99×101}$
$P=\dfrac32\left(1-\dfrac13+\dfrac13-\dfrac15+…+\dfrac1{99}+\dfrac1{100}\right)$
$P=\dfrac32\left(1-\dfrac1{100}\right)=\dfrac{150}{101}$
P = 1 + `9/45` + `9/105` + `9/189` + … + `9/2997`
P = 1 + `3/15` + `3/35` + `3/55` + …. + `3/9999`
P = `3/1` x 3 + `3/3` x 5 + `3/5` x 7 + `3/11` x 5 + … + `3/99` x 101
P = `3/2` x ( `2/1` x 3 + `2/3` x 5 + `2/5` x 7 + `2/11` x 5 + … + `2/99` x 101 )
P = `3/2` x ( 1 – `1/3` + `1/3` – `1/5` + `1/5` – `1/7` + `1/7` – `1/11` + …. + `1/99` – `1/101` )
P = `3/2` x ( 1 – `1/101` )
P = `3/2` x `100/101`
P = `150/101`
`#cactus`