a. Sin3x + cos2x – sinx = 0 b. Sin5x + 2cos^2x = 1 c. Sinx + 4cosx = 2 + sin2x d. Cos3x + cos2x – cosx – 1 = 0 e. Sin^2 (x – π/4) = cos^2 x f. 5cosx

a. Sin3x + cos2x – sinx = 0
b. Sin5x + 2cos^2x = 1
c. Sinx + 4cosx = 2 + sin2x
d. Cos3x + cos2x – cosx – 1 = 0
e. Sin^2 (x – π/4) = cos^2 x
f. 5cosx – sin2x = 0
Giúp em với ạ ???? em cảm ơn nhiều ạ

0 bình luận về “a. Sin3x + cos2x – sinx = 0 b. Sin5x + 2cos^2x = 1 c. Sinx + 4cosx = 2 + sin2x d. Cos3x + cos2x – cosx – 1 = 0 e. Sin^2 (x – π/4) = cos^2 x f. 5cosx”

  1. a)

     sin3x +cos2x -sinx=0
    <=>(sin3x-sinx)+cos2x=0
    <=>2cos2x.sin x+cos2x=0
    cos2x(2sinx+1)=0
    cos2x=0; 2x=π/2+kπ
    x=π/4+kπ!2
    2sinx+1=0;
    x=-π/6+k2π
    x=5π/6+k2π

    b)

    sin5x + 2cos^2x = 1
    <=>sin5x =1-2cos^2x=-cos2x=cos(-2x)=sin[(π/2-(-2x)]
    =sin(2x+π/2)
    5x=2x,+π/2+k2π; x=π/6+2kπ/3
    5x=-2x+π/2+k2π; x=π/14+k2π/7
    k€Z

    c)

    sinx + 4cosx = 2 + sin2x
    <=> sinx + 4cosx = 2 + 2sin xcosx
    <=> [sinx – 2sinx cosx] + 4cosx -2 =0
    <=> sinx(1 – 2 cosx] -2(1-2cosx) =0
    <=> (1 – 2 cosx)(sinx -2) =0
    <=> (1 – 2 cosx) =0
    cosx =1/2
    x =+-pi /3 + k2pi

    d)

    cos3x+cos2x-cosx-1=0
    >>4cos^3(x)-3cosx+2cos^2(x)-1-cosx-1=0
    >>4cos^3(x)+2cos^2(x)-4cosx-2=0
    >>2cos^3(x)+cos^2(x)-2cosx-1=0
    >>cos^2(x)(2cosx+1)-(2cosx+1)=0
    >>(2cosx+1)(cos^2(x)-1)=0
    >>(2cosx+1)(cosx-1)(cosx+1)=0
    >>2cosx+1=0; cosx-1=0 hoặc cosx+1=0

     

    Bình luận

Viết một bình luận