a)tan9x=0 b)tan(3x+pi/6)=-1/căn 3 c)tan(2x+pi/5)= – căn 3 d)cot12x=1 e)cot5x=-1/căn 3 f)cot(3x+10⁰)=căn 3/3 Cảm ơn rất nhiều ạ????☺

a)tan9x=0
b)tan(3x+pi/6)=-1/căn 3
c)tan(2x+pi/5)= – căn 3
d)cot12x=1
e)cot5x=-1/căn 3
f)cot(3x+10⁰)=căn 3/3
Cảm ơn rất nhiều ạ????☺

0 bình luận về “a)tan9x=0 b)tan(3x+pi/6)=-1/căn 3 c)tan(2x+pi/5)= – căn 3 d)cot12x=1 e)cot5x=-1/căn 3 f)cot(3x+10⁰)=căn 3/3 Cảm ơn rất nhiều ạ????☺”

  1. Đáp án:

    $\begin{array}{l}
    a)\tan 9x = 0\\
     \Leftrightarrow \sin 9x = 0\\
     \Leftrightarrow 9x = k\pi \\
     \Leftrightarrow x = \dfrac{{k\pi }}{9}\left( {k \in Z} \right)\\
    Vậy\,x = \dfrac{{k\pi }}{9}\left( {k \in Z} \right)\\
    b)\tan \left( {3x + \dfrac{\pi }{6}} \right) =  – \dfrac{1}{{\sqrt 3 }}\\
     \Leftrightarrow 3x + \dfrac{\pi }{6} =  – \dfrac{\pi }{6} + k\pi \left( {k \in Z} \right)\\
     \Leftrightarrow 3x = \dfrac{{ – \pi }}{3} + k\pi \left( {k \in Z} \right)\\
     \Leftrightarrow x = \dfrac{{ – \pi }}{9} + \dfrac{{k\pi }}{3}\left( {k \in Z} \right)\\
    Vậy\,x = \dfrac{{ – \pi }}{9} + \dfrac{{k\pi }}{3}\left( {k \in Z} \right)\\
    c)\tan \left( {2x + \dfrac{\pi }{5}} \right) = \sqrt 3 \\
     \Leftrightarrow 2x + \dfrac{\pi }{5} = \dfrac{\pi }{3} + k\pi \left( {k \in Z} \right)\\
     \Leftrightarrow 2x = \dfrac{{2\pi }}{{15}} + k\pi \left( {k \in Z} \right)\\
     \Leftrightarrow x = \dfrac{\pi }{{15}} + \dfrac{{k\pi }}{2}\left( {k \in Z} \right)\\
    Vậy\,x = \dfrac{\pi }{{15}} + \dfrac{{k\pi }}{2}\left( {k \in Z} \right)\\
    d)\cot 12x = 1\\
     \Leftrightarrow 12x = \dfrac{\pi }{4} + k\pi \left( {k \in Z} \right)\\
     \Leftrightarrow x = \dfrac{\pi }{{48}} + \dfrac{{k\pi }}{{12}}\left( {k \in Z} \right)\\
    e)\cot 5x =  – \dfrac{1}{{\sqrt 3 }}\\
     \Leftrightarrow 5x = \dfrac{{ – \pi }}{3} + k\pi \left( {k \in Z} \right)\\
     \Leftrightarrow x = \dfrac{{ – \pi }}{{15}} + \dfrac{{k\pi }}{5}\left( {k \in Z} \right)\\
    Vậy\,x = \dfrac{{ – \pi }}{{15}} + \dfrac{{k\pi }}{5}\left( {k \in Z} \right)\\
    f)\cot \left( {3x + {{10}^0}} \right) = \dfrac{{\sqrt 3 }}{3}\\
     \Leftrightarrow 3x + {10^0} = {60^0} + k{.180^0}\left( {k \in Z} \right)\\
     \Leftrightarrow x = \dfrac{{{{50}^0}}}{3} + k{.60^0}\left( {k \in Z} \right)\\
    Vậy\,x = \dfrac{{{{50}^0}}}{3} + k{.60^0}\left( {k \in Z} \right)
    \end{array}$

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

     a) `tan\ 9x=0`

    ĐK: `cos\ 9x \ne 0`

    `⇔ 9x \ne \frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`

    `⇔ x \ne \frac{\pi}{18}+k\frac{\pi}{9}\ (k \in \mathbb{Z})`

    `⇒ 9x = k\pi\ (k \in \mathbb{Z})`

    `⇔ x = k\frac{\pi}{9}\ (TM)\ (k \in \mathbb{Z})`

    Vậy `S={k\frac{\pi}{9}\ (k \in \mathbb{Z})}`

    b) `tan (3x+\frac{\pi}{6})=-\frac{1}{\sqrt{3}}`

    ĐK: `cos (3x+\frac{\pi}{6}) \ne 0`

    `⇔ 3x+\frac{\pi}{6} \ne \frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`

    `⇔ x \ne \frac{\pi}{9}+k\frac{\pi}{3}\ (k \in \mathbb{Z})`

    `⇒ tan (3x+\frac{\pi}{6})=tan (-\frac{\pi}{6})`

    `⇔ 3x+\frac{\pi}{6}=-\frac{\pi}{6}+k\pi\ (k \in \mathbb{Z})`

    `⇔ x=-\frac{\pi}{9}+k\frac{\pi}{3}\ (TM)\ (k \in \mathbb{Z})`

    Vậy `S={-\frac{\pi}{9}+k\frac{\pi}{3}\ (k \in \mathbb{Z})}`

    c) `tan (2x+\frac{\pi}{5})=-\sqrt{3}`

    ĐK: `cos (2x+\frac{\pi}{5}) \ne 0`

    `⇔ 2x+\frac{\pi}{5} \ne \frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`

    `⇔ x \ne \frac{3\pi}{20}+k\frac{\pi}{2}\ (k \in \mathbb{Z})`

    `⇒ tan (2x+\frac{\pi}{5})=tan (-\frac{\pi}{3})`

    `⇔ 2x+\frac{\pi}{5}=-\frac{\pi}{3}+k\pi\ (k \in \mathbb{Z})`

    `⇔ x=-\frac{4\pi}{15}+k\frac{\pi}{2}\ (TM)\ (k \in \mathbb{Z})`

    Vậy `S={-\frac{4\pi}{15}+k\frac{\pi}{2}\ (k \in \mathbb{Z})}`

    d) `cot\ 12x=1`

    ĐK: `sin\ 12x \ne 0`

    `⇔ 12x \ne k\pi\ (k \in \mathbb{Z})`

    `⇔ x \ne \k\frac{\pi}{12}\ (k \in \mathbb{Z})`

    `⇒ cot\ 12x=cot (\frac{\pi}{4})`

    `⇔ 12x=\frac{\pi}{4}+k\pi\ (k \in \mathbb{Z})`

    `⇔ x=\frac{\pi}{48}+k\frac{\pi}{4}\ (TM)\ (k \in \mathbb{Z})`

    Vậy `S={\frac{\pi}{48}+k\frac{\pi}{4}\ (TM)\ (k \in \mathbb{Z})}`

    e) `cot\ 5x =-\frac{1}{\sqrt{3}`

    ĐK: `sin\ 5x \ne 0`

    `⇔ 5x \ne k\pi\ (k \in \mathbb{Z})`

    `⇔ x \ne \k\frac{\pi}{5}\ (k \in \mathbb{Z})`

    `⇒ cot\ 5x=cot (\frac{2\pi}{3})`

    `⇔ 5x=\frac{2\pi}{3}+k\pi\ (k \in \mathbb{Z})`

    `⇔ x=\frac{2\pi}{15}+k\frac{\pi}{5}\ (TM)\ (k \in \mathbb{Z})`

    Vậy `S={\frac{2\pi}{15}+k\frac{\pi}{5}\ (TM)\ (k \in \mathbb{Z})}`

    f) `cot\ (3x+10^{0})=\frac{\sqrt{3}}{3}`

    ĐK: `sin\ (3x+10^{0}) \ne 0`

    `⇔ 3x+10^{0} \ne k180^{0}\ (k \in \mathbb{Z})`

    `⇔ x \ne k\frac{170^{0}}{3}\ (k \in \mathbb{Z})`

    `⇒ cot\ (3x+10^{0})=cot\ 60^{0}`

    `⇔ 3x+10^{0}=60^{0}+k180^{0}\ (k \in \mathbb{Z})`

    `⇔ x=\frac{50^{0}}{3}+k60^{0}\ (TM)\ (k \in \mathbb{Z})`

    Vậy `S={\frac{50^{0}}{3}+k60^{0}\ (TM)\ (k \in \mathbb{Z})}`

    Bình luận

Viết một bình luận