a,Tìm x:cx2 + 36 = 12x b, Phân tích đa thức thành nhân tử : x3 + 1 – x2 – x (x + y)3 – x3 – y3 28/11/2021 Bởi Ayla a,Tìm x:cx2 + 36 = 12x b, Phân tích đa thức thành nhân tử : x3 + 1 – x2 – x (x + y)3 – x3 – y3
`a)x^2+36=12x` `⇔x^2-12x+36=0` `⇔x^2-2.x.6+6^2=0` `⇔(x-6)^2=0` `⇔x-6=0` `⇔x=6` Vậy `x=6` `b)x^3+1-x^2-x` `=(x^3-x^2)-(x-1)` `=x^2(x-1)-(x-1)` `=(x^2-1)(x-1)` `=(x+1)(x-1)(x-1)` `=(x+1)(x-1)^2` `c)(x+y)^3-x^3-y^3` `=x^3+3x^2y+3xy^2+y^3-x^3-y^3` `=(x^3-x^3)+(y^3-y^3)+3x^2y+3xy^2` `=3xy(x+y)` Bình luận
a, `x²+36=12x` `⇔x²-12x+36=0` `⇔(x-6)²=0` `⇔x-6=0` `⇒x=6` Vậy `x=6` b1, `x³+1-x²-x` `=(x+1)(x²-x+1)-x(x+1)` `=(x+1)(x²-x+1-x)` `=(x+1)(x²-2x+1)` `=(x+1)(x-1)²` b2, `(x+y)³ – x³-y³` `=x³+3x²y +3xy²+y³-x³-y³` `=(x³-x³)+(y³-y³)+3x²y+3xy²` `=3xy(x+y)` `#SADTODAY_` Bình luận
`a)x^2+36=12x`
`⇔x^2-12x+36=0`
`⇔x^2-2.x.6+6^2=0`
`⇔(x-6)^2=0`
`⇔x-6=0`
`⇔x=6`
Vậy `x=6`
`b)x^3+1-x^2-x`
`=(x^3-x^2)-(x-1)`
`=x^2(x-1)-(x-1)`
`=(x^2-1)(x-1)`
`=(x+1)(x-1)(x-1)`
`=(x+1)(x-1)^2`
`c)(x+y)^3-x^3-y^3`
`=x^3+3x^2y+3xy^2+y^3-x^3-y^3`
`=(x^3-x^3)+(y^3-y^3)+3x^2y+3xy^2`
`=3xy(x+y)`
a, `x²+36=12x`
`⇔x²-12x+36=0`
`⇔(x-6)²=0`
`⇔x-6=0`
`⇒x=6`
Vậy `x=6`
b1, `x³+1-x²-x`
`=(x+1)(x²-x+1)-x(x+1)`
`=(x+1)(x²-x+1-x)`
`=(x+1)(x²-2x+1)`
`=(x+1)(x-1)²`
b2, `(x+y)³ – x³-y³`
`=x³+3x²y +3xy²+y³-x³-y³`
`=(x³-x³)+(y³-y³)+3x²y+3xy²`
`=3xy(x+y)`
`#SADTODAY_`