x/a + y/b + z/c = 1 a/x + b/y + c/z = 0 tính x^2/a^2 + y^2/b^2 + z^2/c^2 16/08/2021 Bởi Alice x/a + y/b + z/c = 1 a/x + b/y + c/z = 0 tính x^2/a^2 + y^2/b^2 + z^2/c^2
Ta có: `a/x+b/y+c/z=0` `⇒ayz+bxz+cxy=0` Ta có: ` x/a+y/b+z/c=1` `⇔(x/a+y/b+z/c)^2=1` `⇔x^2/a^2+y^2/b^2+z^2/c^2+2((xy)/(ab)+(yz)/(bc)+(zx)/(ca))=1` `⇔x^2/a^2+y^2/b^2+z^2/c^2+2((ayz+bxz+cxy)/(abc))=1` `⇔x^2/a^2+y^2/b^2+z^2/c^2+2.0=1` `⇔x^2/a^2+y^2/b^2+z^2/c^2=1` `⇒ĐPCM` Bình luận
Đáp án: 1 Giải thích các bước giải: \(\begin{array}{l}\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\\ \Rightarrow {(\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2} = 1\\ \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{{2xy}}{{ab}} + \frac{{2yz}}{{bc}} + \frac{{2xz}}{{ac}} = 1\\ \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{{2(xyc + yza + xzb)}}{{abc}} = 1\\\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0\\ \Leftrightarrow \frac{{yza + xzb + xyc}}{{xyz}} = 0\\ \Rightarrow yza + xzb + xyc = 0\\ \Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{0}{{abc}} = 1\\ \Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\end{array}\) Bình luận
Ta có:
`a/x+b/y+c/z=0`
`⇒ayz+bxz+cxy=0`
Ta có:
` x/a+y/b+z/c=1`
`⇔(x/a+y/b+z/c)^2=1`
`⇔x^2/a^2+y^2/b^2+z^2/c^2+2((xy)/(ab)+(yz)/(bc)+(zx)/(ca))=1`
`⇔x^2/a^2+y^2/b^2+z^2/c^2+2((ayz+bxz+cxy)/(abc))=1`
`⇔x^2/a^2+y^2/b^2+z^2/c^2+2.0=1`
`⇔x^2/a^2+y^2/b^2+z^2/c^2=1`
`⇒ĐPCM`
Đáp án:
1
Giải thích các bước giải:
\(\begin{array}{l}
\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\\
\Rightarrow {(\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2} = 1\\
\Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{{2xy}}{{ab}} + \frac{{2yz}}{{bc}} + \frac{{2xz}}{{ac}} = 1\\
\Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{{2(xyc + yza + xzb)}}{{abc}} = 1\\
\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0\\
\Leftrightarrow \frac{{yza + xzb + xyc}}{{xyz}} = 0\\
\Rightarrow yza + xzb + xyc = 0\\
\Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{0}{{abc}} = 1\\
\Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1
\end{array}\)