x/a + y/b + z/c = 1 a/x + b/y + c/z = 0 tính x^2/a^2 + y^2/b^2 + z^2/c^2

x/a + y/b + z/c = 1
a/x + b/y + c/z = 0
tính x^2/a^2 + y^2/b^2 + z^2/c^2

0 bình luận về “x/a + y/b + z/c = 1 a/x + b/y + c/z = 0 tính x^2/a^2 + y^2/b^2 + z^2/c^2”

  1. Ta có:

    `a/x+b/y+c/z=0`

    `⇒ayz+bxz+cxy=0`

    Ta có:

    ` x/a+y/b+z/c=1`

    `⇔(x/a+y/b+z/c)^2=1`

    `⇔x^2/a^2+y^2/b^2+z^2/c^2+2((xy)/(ab)+(yz)/(bc)+(zx)/(ca))=1`

    `⇔x^2/a^2+y^2/b^2+z^2/c^2+2((ayz+bxz+cxy)/(abc))=1`

    `⇔x^2/a^2+y^2/b^2+z^2/c^2+2.0=1`

    `⇔x^2/a^2+y^2/b^2+z^2/c^2=1`

    `⇒ĐPCM`

     

    Bình luận
  2. Đáp án:

     1

    Giải thích các bước giải:

    \(\begin{array}{l}
    \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\\
     \Rightarrow {(\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2} = 1\\
     \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{{2xy}}{{ab}} + \frac{{2yz}}{{bc}} + \frac{{2xz}}{{ac}} = 1\\
     \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{{2(xyc + yza + xzb)}}{{abc}} = 1\\
    \frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0\\
     \Leftrightarrow \frac{{yza + xzb + xyc}}{{xyz}} = 0\\
     \Rightarrow yza + xzb + xyc = 0\\
     \Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + \frac{0}{{abc}} = 1\\
     \Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1
    \end{array}\)

    Bình luận

Viết một bình luận