Xác định m để hpt {x+y=m+2;3x+5y=2m} có nghiệm (x;y) thoả man điều kiên |x+y|=1 28/10/2021 Bởi Lydia Xác định m để hpt {x+y=m+2;3x+5y=2m} có nghiệm (x;y) thoả man điều kiên |x+y|=1
Đáp án: \(\left[ \begin{array}{l}m = – 1\\m = – 3\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}\left\{ \begin{array}{l}x + y = m + 2\\3x + 5y = 2m\end{array} \right.\\ \to \left\{ \begin{array}{l}x = m + 2 – y\\3\left( {m + 2 – y} \right) + 5y = 2m\end{array} \right.\\ \to \left\{ \begin{array}{l}x = m + 2 – y\\3m + 6 – 3y + 5y = 2m\end{array} \right.\\ \to \left\{ \begin{array}{l}x = m + 2 – y\\2y = – m – 6\end{array} \right.\\ \to \left\{ \begin{array}{l}y = \frac{{ – m – 6}}{2}\\x = m + 2 + \frac{{m + 6}}{2}\end{array} \right.\\ \to \left\{ \begin{array}{l}y = \frac{{ – m – 6}}{2}\\x = \frac{{2m + 4 + m + 6}}{2}\end{array} \right.\\ \to \left\{ \begin{array}{l}y = \frac{{ – m – 6}}{2}\\x = \frac{{3m + 10}}{2}\end{array} \right.\\Để:\left| {x + y} \right| = 1\\ \to \left[ \begin{array}{l}x + y = 1\\x + y = – 1\end{array} \right.\\ \to \left[ \begin{array}{l}\frac{{3m + 10}}{2} + \frac{{ – m – 6}}{2} = 1\\\frac{{3m + 10}}{2} + \frac{{ – m – 6}}{2} = – 1\end{array} \right.\\ \to \left[ \begin{array}{l}\frac{{3m + 10 – m – 6}}{2} = 1\\\frac{{3m + 10 – m – 6}}{2} = – 1\end{array} \right.\\ \to \left[ \begin{array}{l}2m + 4 = 2\\2m + 4 = – 2\end{array} \right.\\ \to \left[ \begin{array}{l}2m = – 2\\2m = – 6\end{array} \right.\\ \to \left[ \begin{array}{l}m = – 1\\m = – 3\end{array} \right.\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
m = – 1\\
m = – 3
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
x + y = m + 2\\
3x + 5y = 2m
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = m + 2 – y\\
3\left( {m + 2 – y} \right) + 5y = 2m
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = m + 2 – y\\
3m + 6 – 3y + 5y = 2m
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = m + 2 – y\\
2y = – m – 6
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \frac{{ – m – 6}}{2}\\
x = m + 2 + \frac{{m + 6}}{2}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \frac{{ – m – 6}}{2}\\
x = \frac{{2m + 4 + m + 6}}{2}
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \frac{{ – m – 6}}{2}\\
x = \frac{{3m + 10}}{2}
\end{array} \right.\\
Để:\left| {x + y} \right| = 1\\
\to \left[ \begin{array}{l}
x + y = 1\\
x + y = – 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
\frac{{3m + 10}}{2} + \frac{{ – m – 6}}{2} = 1\\
\frac{{3m + 10}}{2} + \frac{{ – m – 6}}{2} = – 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
\frac{{3m + 10 – m – 6}}{2} = 1\\
\frac{{3m + 10 – m – 6}}{2} = – 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
2m + 4 = 2\\
2m + 4 = – 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
2m = – 2\\
2m = – 6
\end{array} \right.\\
\to \left[ \begin{array}{l}
m = – 1\\
m = – 3
\end{array} \right.
\end{array}\)