anh puvid ~ chị hangibich giúp em ạ !!!!!! $\to \displaystyle\int\dfrac{x^2}{1}dx$ 12/09/2021 Bởi Clara anh puvid ~ chị hangibich giúp em ạ !!!!!! $\to \displaystyle\int\dfrac{x^2}{1}dx$
Đáp án: Ta có : $\displaystyle\int\dfrac{x^2}{1}dx$ $= \displaystyle\int x^2dx$ $ = \displaystyle\int xxdx$ `= 1/2x^3 – 1/2` $\displaystyle\int xxdx$ `= 1/2x^3 – 1/4 x^3 + 1/4` $\displaystyle\int xxdx$ `= 1/2x^3 – 1/4x^3 + 1/8x^3 – 1/8` $\displaystyle\int xxdx$ `…` `= \sum_{n=1}^{∞} \frac{(-1)^{n+1}}{2^n}x^3+C` `= x^3 \sum_{n=1}^{∞} \frac{(-1)^{n+1}}{2^n}+C` `= x^3 ( \sum_{n=0}^{∞} \frac{(-1)^{2n}}{2^{2n+1}}+ \sum_{n=1}^{∞} \frac{(-1)^{2n+1}}{2^{2n}} ) + C` `= x^3 (\sum_{n=0}^{∞} \frac{1}{2^{2n+1}}- \sum_{n=1}^{∞} \frac{1}{2^{2n}}) + C` `= x^3 (\frac{1}{2}\sum_{n=0}^{∞} \frac{1}{4^n}- \frac{1}{4}\sum_{n=0}^{∞} \frac{1}{4^n}) + C` `= x^3 (1/4\sum_{n=0}^{∞} \frac{1}{4^n}) + C` `= x^3 (1/4 1/(1 – 1/4)) + C` `= 1/3 x^3 + C` Bình luận
Đáp án: $\dfrac{x^3}{3} + C$ Giải thích các bước giải: $\quad \displaystyle\int \dfrac{x^2}{1}dx$ $= \displaystyle\int x^2dx$ $= \dfrac{x^{2+1}}{2+1} + C$ $=\dfrac{x^3}{3} + C$ Bình luận
Đáp án:
Ta có :
$\displaystyle\int\dfrac{x^2}{1}dx$
$= \displaystyle\int x^2dx$
$ = \displaystyle\int xxdx$
`= 1/2x^3 – 1/2` $\displaystyle\int xxdx$
`= 1/2x^3 – 1/4 x^3 + 1/4` $\displaystyle\int xxdx$
`= 1/2x^3 – 1/4x^3 + 1/8x^3 – 1/8` $\displaystyle\int xxdx$
`…`
`= \sum_{n=1}^{∞} \frac{(-1)^{n+1}}{2^n}x^3+C`
`= x^3 \sum_{n=1}^{∞} \frac{(-1)^{n+1}}{2^n}+C`
`= x^3 ( \sum_{n=0}^{∞} \frac{(-1)^{2n}}{2^{2n+1}}+ \sum_{n=1}^{∞} \frac{(-1)^{2n+1}}{2^{2n}} ) + C`
`= x^3 (\sum_{n=0}^{∞} \frac{1}{2^{2n+1}}- \sum_{n=1}^{∞} \frac{1}{2^{2n}}) + C`
`= x^3 (\frac{1}{2}\sum_{n=0}^{∞} \frac{1}{4^n}- \frac{1}{4}\sum_{n=0}^{∞} \frac{1}{4^n}) + C`
`= x^3 (1/4\sum_{n=0}^{∞} \frac{1}{4^n}) + C`
`= x^3 (1/4 1/(1 – 1/4)) + C`
`= 1/3 x^3 + C`
Đáp án:
$\dfrac{x^3}{3} + C$
Giải thích các bước giải:
$\quad \displaystyle\int \dfrac{x^2}{1}dx$
$= \displaystyle\int x^2dx$
$= \dfrac{x^{2+1}}{2+1} + C$
$=\dfrac{x^3}{3} + C$