áp dụng hăng đẳng thức a, (1/25 – 36y ²) b, 4 – y/9 ⁶ 09/07/2021 Bởi Aubrey áp dụng hăng đẳng thức a, (1/25 – 36y ²) b, 4 – y/9 ⁶
`a) (1/25 – 36y^2)` `= (1/5)^2 – 6^2y^2` `= (1/5)^2 – (6y)^2` `= (1/5 + 6y)(1/5 – 6y)` `b) 4 – (y/9)^6` `= 2^2 – [(y/9)^3]^2` `= [2 – (y/9)^3][2 + (y/9)^3]` Áp dụng: `x^2 – y^2 = (x + y)(x – y)` Bình luận
`(1/(25) – 36y ²)` `=1/(5^2)-(6y)^2` `=(1/5-6y)(1/5 +6y)` `4-(y/9)^6` `=2^2-((y/9)^3)^2` `=(2-(y/9)^3 )(2+(y/9)^3)` Bình luận
`a) (1/25 – 36y^2)`
`= (1/5)^2 – 6^2y^2`
`= (1/5)^2 – (6y)^2`
`= (1/5 + 6y)(1/5 – 6y)`
`b) 4 – (y/9)^6`
`= 2^2 – [(y/9)^3]^2`
`= [2 – (y/9)^3][2 + (y/9)^3]`
Áp dụng: `x^2 – y^2 = (x + y)(x – y)`
`(1/(25) – 36y ²)`
`=1/(5^2)-(6y)^2`
`=(1/5-6y)(1/5 +6y)`
`4-(y/9)^6`
`=2^2-((y/9)^3)^2`
`=(2-(y/9)^3 )(2+(y/9)^3)`