B=2^2/3 . 3^2/8 . 4^2/15. … . 100^2/999

B=2^2/3 . 3^2/8 . 4^2/15. … . 100^2/999

0 bình luận về “B=2^2/3 . 3^2/8 . 4^2/15. … . 100^2/999”

  1. Giải thích các bước giải:

    Ta có:

    $B=\dfrac{2^2}{3}.\dfrac{3^2}{8}.\dfrac{4^2}{15}….\dfrac{100^2}{9999}$

    $\to B=\dfrac{2^2}{2^2-1}.\dfrac{3^2}{3^2-1}.\dfrac{4^2}{4^2-1}….\dfrac{100^2}{100^2-1}$

    $\to B=\dfrac{2^2}{(2-1)(2+1)}.\dfrac{3^2}{(3-1)(3+1)}.\dfrac{4^2}{(4-1)(4+1)}….\dfrac{100^2}{(100-1)(100+1)}$

    $\to B=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}….\dfrac{100^2}{99.101}$

    $\to B=\dfrac{2.3.4…100}{1.2.3…99}.\dfrac{2.3.4….100}{3.4.5…101}$

    $\to B=100.\dfrac{2}{101}$

    $\to B=\dfrac{200}{101}$

    Bình luận

Viết một bình luận