B1 GPT
a. x+5/x-1>=0
b.x-15/73+ x-13/71<= x-11/69+ x-9/67
B2
cho 1/x+1/y+1/z=0 tinh gia tri bieu thuc A= yz/x^2 + zx/y^2 +xy/z^2
Mn giup e vs ^^
B1 GPT
a. x+5/x-1>=0
b.x-15/73+ x-13/71<= x-11/69+ x-9/67
B2
cho 1/x+1/y+1/z=0 tinh gia tri bieu thuc A= yz/x^2 + zx/y^2 +xy/z^2
Mn giup e vs ^^
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
a,\\
\dfrac{{x + 5}}{{x – 1}} \ge 0\,\,\,\,\,\,\,\left( {x \ne 1} \right) \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 5 \ge 0\\
x – 1 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 5 \le 0\\
x – 1 < 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \ge – 5\\
x > 1
\end{array} \right.\\
\left\{ \begin{array}{l}
x \le – 5\\
x < 1
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x \le – 5
\end{array} \right.\\
b,\\
\dfrac{{x – 15}}{{73}} + \dfrac{{x – 13}}{{71}} \le \dfrac{{x – 11}}{{69}} + \dfrac{{x – 9}}{{67}}\\
\Leftrightarrow \left( {\dfrac{{x – 15}}{{73}} + 1} \right) + \left( {\dfrac{{x – 13}}{{71}} + 1} \right) \le \left( {\dfrac{{x – 11}}{{69}} + 1} \right) + \left( {\dfrac{{x – 9}}{{67}} + 1} \right)\\
\Leftrightarrow \dfrac{{\left( {x – 15} \right) + 73}}{{73}} + \dfrac{{\left( {x – 13} \right) + 71}}{{71}} \le \dfrac{{\left( {x – 11} \right) + 69}}{{69}} + \dfrac{{\left( {x – 9} \right) + 67}}{{67}}\\
\Leftrightarrow \dfrac{{x + 58}}{{73}} + \dfrac{{x + 58}}{{71}} \le \dfrac{{x + 58}}{{69}} + \dfrac{{x + 58}}{{67}}\\
\Leftrightarrow \left( {x + 58} \right)\left( {\dfrac{1}{{73}} + \dfrac{1}{{71}} – \dfrac{1}{{69}} – \dfrac{1}{{67}}} \right) \le 0\\
\dfrac{1}{{73}} + \dfrac{1}{{71}} < \dfrac{1}{{69}} + \dfrac{1}{{67}} \Rightarrow \dfrac{1}{{73}} + \dfrac{1}{{71}} – \dfrac{1}{{69}} – \dfrac{1}{{67}} < 0\\
\Rightarrow x + 58 \ge 0\\
\Leftrightarrow x \ge – 58\\
2,\\
{x^3} + {y^3} + {z^3}\\
= \left( {{x^3} + {y^3} + 3x{y^2} + 3{x^2}y} \right) + {z^3} – \left( {3x{y^2} + 3{x^2}y} \right)\\
= {\left( {x + y} \right)^3} + {z^3} – 3xy\left( {x + y} \right)\\
= \left[ {\left( {x + y} \right) + z} \right].\left[ {{{\left( {x + y} \right)}^2} – \left( {x + y} \right).z + {z^2}} \right] – 3xy\left( {x + y + z} \right) + 3xyz\\
= \left( {x + y + z} \right).\left( {{x^2} + {y^2} + {z^2} + 2xy – xz – yz} \right) – 3xy\left( {x + y + z} \right) + 3xyz\\
= \left( {x + y + z} \right).\left( {{x^2} + {y^2} + {z^2} + 2xy – xz – yz – 3xy} \right) + 3xyz\\
= \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} – xy – yz – zx} \right) + 3xyz\\
\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 0 \Leftrightarrow \dfrac{{xy + yz + zx}}{{xyz}} = 0 \Leftrightarrow xy + yz + zx = 0\\
A = \dfrac{{yz}}{{{x^2}}} + \dfrac{{zx}}{{{y^2}}} + \dfrac{{xy}}{{{z^2}}}\\
= \dfrac{{{y^3}{z^3} + {z^3}{x^3} + {z^3}{y^3}}}{{{x^2}{y^2}{z^2}}}\\
= \dfrac{{\left( {xy + yz + zx} \right)\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2} – xyyz – yzzx – zxxy} \right) + 3xy.yz.zx}}{{{x^2}{y^2}{z^2}}}\\
= \dfrac{{0.\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2} – xyyz – yzzx – zxxy} \right) + 3{x^2}{y^2}{z^2}}}{{{x^2}{y^2}{z^2}}}\\
= 3
\end{array}\)