B1 GPT a. x+5/x-1>=0 b.x-15/73+ x-13/71<= x-11/69+ x-9/67 B2 cho 1/x+1/y+1/z=0 tinh gia tri bieu thuc A= yz/x^2 + zx/y^2 +xy/z^2 Mn giup e vs ^^

B1 GPT
a. x+5/x-1>=0
b.x-15/73+ x-13/71<= x-11/69+ x-9/67 B2 cho 1/x+1/y+1/z=0 tinh gia tri bieu thuc A= yz/x^2 + zx/y^2 +xy/z^2 Mn giup e vs ^^

0 bình luận về “B1 GPT a. x+5/x-1>=0 b.x-15/73+ x-13/71<= x-11/69+ x-9/67 B2 cho 1/x+1/y+1/z=0 tinh gia tri bieu thuc A= yz/x^2 + zx/y^2 +xy/z^2 Mn giup e vs ^^”

  1. Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    1,\\
    a,\\
    \dfrac{{x + 5}}{{x – 1}} \ge 0\,\,\,\,\,\,\,\left( {x \ne 1} \right) \Leftrightarrow \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    x + 5 \ge 0\\
    x – 1 > 0
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    x + 5 \le 0\\
    x – 1 < 0
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    x \ge  – 5\\
    x > 1
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    x \le  – 5\\
    x < 1
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x > 1\\
    x \le  – 5
    \end{array} \right.\\
    b,\\
    \dfrac{{x – 15}}{{73}} + \dfrac{{x – 13}}{{71}} \le \dfrac{{x – 11}}{{69}} + \dfrac{{x – 9}}{{67}}\\
     \Leftrightarrow \left( {\dfrac{{x – 15}}{{73}} + 1} \right) + \left( {\dfrac{{x – 13}}{{71}} + 1} \right) \le \left( {\dfrac{{x – 11}}{{69}} + 1} \right) + \left( {\dfrac{{x – 9}}{{67}} + 1} \right)\\
     \Leftrightarrow \dfrac{{\left( {x – 15} \right) + 73}}{{73}} + \dfrac{{\left( {x – 13} \right) + 71}}{{71}} \le \dfrac{{\left( {x – 11} \right) + 69}}{{69}} + \dfrac{{\left( {x – 9} \right) + 67}}{{67}}\\
     \Leftrightarrow \dfrac{{x + 58}}{{73}} + \dfrac{{x + 58}}{{71}} \le \dfrac{{x + 58}}{{69}} + \dfrac{{x + 58}}{{67}}\\
     \Leftrightarrow \left( {x + 58} \right)\left( {\dfrac{1}{{73}} + \dfrac{1}{{71}} – \dfrac{1}{{69}} – \dfrac{1}{{67}}} \right) \le 0\\
    \dfrac{1}{{73}} + \dfrac{1}{{71}} < \dfrac{1}{{69}} + \dfrac{1}{{67}} \Rightarrow \dfrac{1}{{73}} + \dfrac{1}{{71}} – \dfrac{1}{{69}} – \dfrac{1}{{67}} < 0\\
     \Rightarrow x + 58 \ge 0\\
     \Leftrightarrow x \ge  – 58\\
    2,\\
    {x^3} + {y^3} + {z^3}\\
     = \left( {{x^3} + {y^3} + 3x{y^2} + 3{x^2}y} \right) + {z^3} – \left( {3x{y^2} + 3{x^2}y} \right)\\
     = {\left( {x + y} \right)^3} + {z^3} – 3xy\left( {x + y} \right)\\
     = \left[ {\left( {x + y} \right) + z} \right].\left[ {{{\left( {x + y} \right)}^2} – \left( {x + y} \right).z + {z^2}} \right] – 3xy\left( {x + y + z} \right) + 3xyz\\
     = \left( {x + y + z} \right).\left( {{x^2} + {y^2} + {z^2} + 2xy – xz – yz} \right) – 3xy\left( {x + y + z} \right) + 3xyz\\
     = \left( {x + y + z} \right).\left( {{x^2} + {y^2} + {z^2} + 2xy – xz – yz – 3xy} \right) + 3xyz\\
     = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} – xy – yz – zx} \right) + 3xyz\\
    \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 0 \Leftrightarrow \dfrac{{xy + yz + zx}}{{xyz}} = 0 \Leftrightarrow xy + yz + zx = 0\\
    A = \dfrac{{yz}}{{{x^2}}} + \dfrac{{zx}}{{{y^2}}} + \dfrac{{xy}}{{{z^2}}}\\
     = \dfrac{{{y^3}{z^3} + {z^3}{x^3} + {z^3}{y^3}}}{{{x^2}{y^2}{z^2}}}\\
     = \dfrac{{\left( {xy + yz + zx} \right)\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2} – xyyz – yzzx – zxxy} \right) + 3xy.yz.zx}}{{{x^2}{y^2}{z^2}}}\\
     = \dfrac{{0.\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2} – xyyz – yzzx – zxxy} \right) + 3{x^2}{y^2}{z^2}}}{{{x^2}{y^2}{z^2}}}\\
     = 3
    \end{array}\)

    Bình luận

Viết một bình luận