Bài 1: `a)2^{x+1}+2^2014=2^2015` `b)` So sánh `3^{2012}` và `5^{1202}` Bài 2: Tính: `1/9.20+1/3.14+1/7.18+1/12.23`. 10/09/2021 Bởi Raelynn Bài 1: `a)2^{x+1}+2^2014=2^2015` `b)` So sánh `3^{2012}` và `5^{1202}` Bài 2: Tính: `1/9.20+1/3.14+1/7.18+1/12.23`.
Giải thích các bước giải: Bài `1``a)``**` `2^(x+1)+2^2014=2^2015``=>2^x . 2+2^2014 . 1=2^2015``=>2^x .2=2^2015 -2^2014 .1``=>2^x .2=2^2014 . 2-2^2014 . 1``=>2^x .2=2^2014 .(2-1)``=>2^x .2=2^2014``=>2^x =2^2014 :2``=>2^x=2^2013``=>x=2013`Vậy `x=2013` `**` `2^(x+1) .2^2014 =2^2015` `=>2^(x+1)=2^2015:2^2014` `=>2^(x+1)=2` `=>x+1=1` `=>x=1-1` `=>x=0` Vậy `x=0`Bài `2``1/9.20+1/3.14+1/7.18+1/12.23``=1/180+1/42+1/126+1/276``=(1/42+1/126)+(1/180+1/276)``=(3/126+1/126)+(1/180+1/276)``=4/126+1/8+1/276` `=2/63+1/180+1/276``=460/14490+(276/49680+180/49680)``=460/14490+456/49680``=460/14490+19/2070``=460/14490+133/14490``=593/14490` Bình luận
Giải thích các bước giải: Bài 1: `a) 2^x+1 . 2^2014 = 2^2015` `=> 2^x . 2 = 2^2015 : 2^2014` `=> 2^x . 2 = 2` `=> 2^x = 1` `=> x = 0` Vậy `x=0` Bài 2: `1/(9.20) + 1/(3.14) + 1/(7.18) + 1/(12.23)` `=1/180 + 1/42 + 1/126 + 1/276` `=(1/180 + 1/276) + (1/42 + 1/126)` `=(276/49680 + 180/49680) + ( 3/126 + 1/126)` `=456/49680 + 4/126` `=19/2070 + 2/63` `=133/14490 + 460/14490` `=593/14490` Bình luận
Giải thích các bước giải:
Bài `1`
`a)`
`**`
`2^(x+1)+2^2014=2^2015`
`=>2^x . 2+2^2014 . 1=2^2015`
`=>2^x .2=2^2015 -2^2014 .1`
`=>2^x .2=2^2014 . 2-2^2014 . 1`
`=>2^x .2=2^2014 .(2-1)`
`=>2^x .2=2^2014`
`=>2^x =2^2014 :2`
`=>2^x=2^2013`
`=>x=2013`
Vậy `x=2013`
`**`
`2^(x+1) .2^2014 =2^2015`
`=>2^(x+1)=2^2015:2^2014`
`=>2^(x+1)=2`
`=>x+1=1`
`=>x=1-1`
`=>x=0`
Vậy `x=0`
Bài `2`
`1/9.20+1/3.14+1/7.18+1/12.23`
`=1/180+1/42+1/126+1/276`
`=(1/42+1/126)+(1/180+1/276)`
`=(3/126+1/126)+(1/180+1/276)`
`=4/126+1/8+1/276`
`=2/63+1/180+1/276`
`=460/14490+(276/49680+180/49680)`
`=460/14490+456/49680`
`=460/14490+19/2070`
`=460/14490+133/14490`
`=593/14490`
Giải thích các bước giải:
Bài 1:
`a) 2^x+1 . 2^2014 = 2^2015`
`=> 2^x . 2 = 2^2015 : 2^2014`
`=> 2^x . 2 = 2`
`=> 2^x = 1`
`=> x = 0`
Vậy `x=0`
Bài 2:
`1/(9.20) + 1/(3.14) + 1/(7.18) + 1/(12.23)`
`=1/180 + 1/42 + 1/126 + 1/276`
`=(1/180 + 1/276) + (1/42 + 1/126)`
`=(276/49680 + 180/49680) + ( 3/126 + 1/126)`
`=456/49680 + 4/126`
`=19/2070 + 2/63`
`=133/14490 + 460/14490`
`=593/14490`