Bài 1: a) /2x – 5/=4 b)1/3 – /5/4 – 2x/=1/4 c)3/4 – /2x + 1/=7/8 d)/x – 1,5/= 2 e)/x + 1/ /y – 3/=0

Bài 1:
a) /2x – 5/=4
b)1/3 – /5/4 – 2x/=1/4
c)3/4 – /2x + 1/=7/8
d)/x – 1,5/= 2
e)/x + 1/ /y – 3/=0

0 bình luận về “Bài 1: a) /2x – 5/=4 b)1/3 – /5/4 – 2x/=1/4 c)3/4 – /2x + 1/=7/8 d)/x – 1,5/= 2 e)/x + 1/ /y – 3/=0”

  1. a, $/2x – 5/=4 $ 

      \(⇔\left[ \begin{array}{l}2x – 5=4 \\2x-5=-4\end{array} \right.\) 

    \(⇔\left[ \begin{array}{l}2x=9\\2x=1\end{array} \right.\) 

    \(⇔\left[ \begin{array}{l}x=\dfrac{9}{2} \\x=\dfrac{1}{2} \end{array} \right.\)

     Vậy $x=\dfrac{9}{2}$ $hoặc$ $x=\dfrac{1}{2}$ 

    b,  $\dfrac{1}{3}-$  $/\dfrac{5}{4}-2x/=$ $\dfrac{1}{4}$ 

        $⇔/\dfrac{5}{4}-2x/=$ $\dfrac{1}{12}$ 

        \(⇔\left[ \begin{array}{l}\dfrac{5}{4}-2x=\dfrac{1}{12} \\\dfrac{5}{4} -2x=\dfrac{-1}{12} \end{array} \right.\)  

        \(⇔\left[ \begin{array}{l} x=\dfrac{7}{12} \\x=\dfrac{2}{3}\end{array} \right.\)

    Vậy $x=\dfrac{7}{12}$ hoặc $x=\dfrac{2}{3}$ 

    c, $\dfrac{3}{4}-/2x+1/=$ $\dfrac{7}{8}$ 

        $⇔/2x+1/=\dfrac{-1}{8}$ 

    Vì $/2x+1/$ $\geq0$ 

    ⇒ Phương trình vô nghiệm.

    d, $/x – 1,5/= 2$ 

      \(⇔\left[ \begin{array}{l}x= \dfrac{7}{2} \\x=\dfrac{-1}{2} \end{array} \right.\) 

    Vậy $x=\dfrac{7}{2}$ hoặc $x=\dfrac{-1}{2}$ 

    e, $⇒/x+1/=0$ và $y-3=0$ 

    $⇒x=-1$ và $y=3$ 

    Bình luận

Viết một bình luận