Bài 1. Cho 3a65b là số có năm chữ số. Tìm các chữ số a, b sao cho số 3a65b chia hết cho cả 5 và 9. 10/08/2021 Bởi Melanie Bài 1. Cho 3a65b là số có năm chữ số. Tìm các chữ số a, b sao cho số 3a65b chia hết cho cả 5 và 9.
Ta có: $\overline{3a65b}$ chia hết cho $5;9$ $⇒ b = 0$ hoặc $b=5$ Nếu $b=0$ $⇒ 3 + a + 6 + 5 + 0$ chia hết cho $9$ $⇔ 14 + a$ chia hết cho $9$ $⇒ a = 4$ Nếu $b=5$ $⇒ 3 + a + 6 + 5 + 5$ chia hết cho $9$ $⇔ 19 + 8$ chia hết cho $9$ $⇒ a = 8$ Ta tìm được các số : $34650;38655$ Vậy `(a;b)=(4;0);(8;5)` Bình luận
Đáp án: Giải thích các bước giải: Vì \(\overline{3a65b}\ \vdots\ 5,9\) `⇒ b=0` hoặc `b=5` \(\overline{3a65b}\ \vdots\ 9\) \(\overline{3+6+5+a+b}\ \vdots\ 9\) \(\overline{14+a+b}\ \vdots\ 9\) `⇒ a=4,b=0` hoặc `a=8,b=5` Số đó là `34650,38655` Bình luận
Ta có:
$\overline{3a65b}$ chia hết cho $5;9$
$⇒ b = 0$ hoặc $b=5$
Nếu $b=0$
$⇒ 3 + a + 6 + 5 + 0$ chia hết cho $9$
$⇔ 14 + a$ chia hết cho $9$
$⇒ a = 4$
Nếu $b=5$
$⇒ 3 + a + 6 + 5 + 5$ chia hết cho $9$
$⇔ 19 + 8$ chia hết cho $9$
$⇒ a = 8$
Ta tìm được các số : $34650;38655$
Vậy `(a;b)=(4;0);(8;5)`
Đáp án:
Giải thích các bước giải:
Vì \(\overline{3a65b}\ \vdots\ 5,9\)
`⇒ b=0` hoặc `b=5`
\(\overline{3a65b}\ \vdots\ 9\)
\(\overline{3+6+5+a+b}\ \vdots\ 9\)
\(\overline{14+a+b}\ \vdots\ 9\)
`⇒ a=4,b=0` hoặc `a=8,b=5`
Số đó là `34650,38655`