Bài 1: Cho ΔABC nhọn, 2 đường cao BH và CK. Chứng minh: a) S ΔAHK = S ΔABC . cos ²A b) S tứ giác BCHK = S ΔABC . sin ²A

Bài 1: Cho ΔABC nhọn, 2 đường cao BH và CK. Chứng minh:
a) S ΔAHK = S ΔABC . cos ²A
b) S tứ giác BCHK = S ΔABC . sin ²A

0 bình luận về “Bài 1: Cho ΔABC nhọn, 2 đường cao BH và CK. Chứng minh: a) S ΔAHK = S ΔABC . cos ²A b) S tứ giác BCHK = S ΔABC . sin ²A”

  1. a) Xét $∆AHB$ và $∆AKC$ có:

    $\widehat{A}:$ góc chung

    $\widehat{H} = \widehat{K} = 90^o$

    Do đó $∆AHB \sim ∆AKC \, (g.g)$

    $\Rightarrow \dfrac{AH}{AK} = \dfrac{AB}{AC}$

    $\Rightarrow \dfrac{AH}{AB} = \dfrac{AK}{AC}$

    Xét $∆AHK$ và $∆ABC$ có:

    $\widehat{BAC}:$ góc chung

    $\dfrac{AH}{AB} = \dfrac{AK}{AC}$ $(cmt)$

    Do đó $∆AHK\sim ∆ABC \, (c.g.c)$

    $\Rightarrow \dfrac{S_{AHK}}{S_{ABC}} = \left(\dfrac{AH}{AB}\right)^2 = \cos^2A$

    $\Rightarrow S_{AHK} = S_{ABC}.\cos^2A$

    b) Ta có: $S_{BKHC} = S_{ABC} – S_{AHK}$

    $= S_{ABC} – S_{ABC}.\cos^2A$

    $= S_{ABC}(1 – \cos^2A)$

    $= S_{ABC}.\sin^2A$

    Bình luận

Viết một bình luận