Bài 1: Cho ABC vuông ở A (AB < AC), đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng kẻ qua D song song với AB cắt BC và AC lần lượt ở M và N. Chứng minh: a) Tứ giác ABDM là hình thoi. b) AM CD . c) Gọi I là trung điểm của MC; chứng minh IN HN. Bài 2: Cho tam giác ABC cân tại A, có AB=5cm, BC=6cm, phân giác AM ( M BC). Gọi O là trung điểm của AC , K là điểm đối xứng với M qua O. a) Tính diện tích tam giác ABC. b) Chứng minh AK // MC. c) Tứ giác AMCK là hình gì ? Vì sao ? d) Tam giác ABC có thêm điều kiện gì thì tứ giác AMCK là hình vuông ?
Bài 1: a, Xét $ΔABH$ và $ΔADH$ có:
$AH=HD$
$∠AHB=∠MHD$
$∠BAH=∠HDM$
$=>ΔABH=ΔDMH$
$=>AB=DM$
$=>ABDM$ là HBH
Và: $AH⊥BM$
$=>ABDM$ là hình thoi.
b, Vì: $DN//AB$
Và: $AM⊥AC$
$=> DN⊥AC$
$=>M$ là trực tâm
$=>AM⊥CD$
c, Xét $ΔAHC$ vuông tại $H$ có: $HN⊥AC$
$=>HN=NC=>ΔHCN$ cân tại $N$
$=>∠NHC=∠NCH$
$ΔNMC$ vuông tại $N=>NI=IM=>∠INM=∠NMI$
Mà: $∠NMI+∠NCH=90^0=>∠NHC+∠MNI=90^0=>∠HNI=90^0$
$=>Đpcm$