bài 1 : cho E =2019^2019+1/2019^2020+1 cho F = 2019^2020+1/2019^2021+1 so sánh e và f mong mn giúp ạ.help me

bài 1 : cho E =2019^2019+1/2019^2020+1
cho F = 2019^2020+1/2019^2021+1
so sánh e và f
mong mn giúp ạ.help me

0 bình luận về “bài 1 : cho E =2019^2019+1/2019^2020+1 cho F = 2019^2020+1/2019^2021+1 so sánh e và f mong mn giúp ạ.help me”

  1. ` E = (2019^(2019) +1)/(2019^(2020) +1`

    ` F = (2019^(2020) +1)/(2019^(2021) +1`

    Ta có ` 2019 E = (2019^(2020) +2019)/(2019^(2020) +1) = 1 + 2018/(2019^(2020) +1)`

    ` 2019 F = ( 2019^(2021) + 2019)/(2019^(2021)+1) = 1 + 2018/(2019^(2021)+ 1)`

    Vì ` 2019^(2020) < 2019^(2021) => 2019^(2020) +1 < 2019^(2021) +1`

    ` => 2018/(2019^(2020) +1) > 2018/(2019^(2021)+ 1)`

    ` => 1 + 2018/(2019^(2020) +1) > 1 + 2018/(2019^(2021)+ 1)`

    ` => 2019 E > 2019 F`

    `=> E > F`

    Vậy ` E > F`

    Bình luận
  2. Ta có:

    $E=\dfrac{2019^{2019}+1}{2019^{2020}+1}$

    $\to 2019E=\dfrac{2019^{2020}+2019}{2019^{2020}+1}$

    $=\dfrac{2019^{2020}+1+2018}{2019^{2020}+1}$

    $=1+\dfrac{2018}{2019^{2020}+1}$

    Lại có:

    $F=\dfrac{2019^{2020}+1}{2019^{2021}+1}$

    $\to 2019F=\dfrac{2019^{2021}+2019}{2019^{2021}+1}$

    $=\dfrac{2019^{2021}+1+2018}{2019^{2021}+1}$

    $=1+\dfrac{2018}{2019^{2021}+1}$

    Nhận thấy:

    $\dfrac{2018}{2019^{2020}+1}>\dfrac{2018}{2019^{2021}+1}$

    $\to 1+\dfrac{2018}{2019^{2020}+1}>1+\dfrac{2018}{2019^{2021}+1}$

    $↔2019E>2019F$

    $\to E>F$ 

    Bình luận

Viết một bình luận