bài 1 : chứng minh
a)4a^2 -8a +25 luôn dương với mọi a
b)10a-a^2-35 luôn âm với mọi a
bài 2 tìm giá trị nhỏ nhất của biểu thức sau
a) M=x^2 – 12x +33
b) N= x^2+x+3
c)P= 9x^2 – 6x +5
bài 1 : chứng minh
a)4a^2 -8a +25 luôn dương với mọi a
b)10a-a^2-35 luôn âm với mọi a
bài 2 tìm giá trị nhỏ nhất của biểu thức sau
a) M=x^2 – 12x +33
b) N= x^2+x+3
c)P= 9x^2 – 6x +5
Đáp án:
B2:
c. \(Min = 4\)
Giải thích các bước giải:
\(\begin{array}{l}
B1:\\
a.4{a^2} – 8x + 25 = 4{a^2} – 2.2a.2 + 4 + 21\\
= {\left( {2a – 2} \right)^2} + 21\\
Do:{\left( {2a – 2} \right)^2} \ge 0\forall a \in R\\
\to {\left( {2a – 2} \right)^2} + 21 > 0\forall a \in R\\
b. – {a^2} + 10a – 35 = – \left( {{a^2} – 10a + 35} \right)\\
= – \left( {{a^2} – 2.a.5 + 25 + 10} \right)\\
= – {\left( {a – 5} \right)^2} – 10\\
Do:{\left( {a – 5} \right)^2} \ge 0\forall a \in R\\
\to – {\left( {a – 5} \right)^2} \le 0\forall a \in R\\
\to – {\left( {a – 5} \right)^2} – 10 < 0\forall a \in R\\
B2:\\
a.M = {x^2} – 12x + 33\\
= {x^2} – 2.x.6 + 36 – 3\\
= {\left( {x – 6} \right)^2} – 3\\
Do:{\left( {x – 6} \right)^2} \ge 0\forall x \in R\\
\to {\left( {x – 6} \right)^2} – 3 \ge – 3\\
\to Min = – 3\\
\Leftrightarrow x – 6 = 0\\
\Leftrightarrow x = 6\\
b.N = {x^2} + 2x.\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{{11}}{4}\\
= {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{{11}}{4}\\
Do:{\left( {x + \dfrac{1}{2}} \right)^2} \ge 0\forall x \in R\\
\to {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{{11}}{4} \ge \dfrac{{11}}{4}\\
\to Min = \dfrac{{11}}{4}\\
\Leftrightarrow x + \dfrac{1}{2} = 0\\
\Leftrightarrow x = – \dfrac{1}{2}\\
c.P = 9{x^2} – 2.3x.1 + 1 + 4\\
= {\left( {3x – 1} \right)^2} + 4\\
Do:{\left( {3x – 1} \right)^2} \ge 0\forall x \in R\\
\to {\left( {3x – 1} \right)^2} + 4 \ge 4\\
\to Min = 4\\
\Leftrightarrow x = \dfrac{1}{3}
\end{array}\)