Bài 1 Chứng minh rằng a)tan^2 a +1=1/cos^2a b)cot2a +1=1/sin^2a c)cos^4a-sin^4a=2cos^2a -1 giúp mình với mình cần gấp 15/09/2021 Bởi Arianna Bài 1 Chứng minh rằng a)tan^2 a +1=1/cos^2a b)cot2a +1=1/sin^2a c)cos^4a-sin^4a=2cos^2a -1 giúp mình với mình cần gấp
a, $VT= tan^2a+1$ $= \dfrac{sin^2a}{cos^2a}+ 1$ $= \dfrac{sin^2a+cos^2a}{cos^2a}$ $= \dfrac{1}{cos^2a}= VP$ b, $VT= cot^2a+1$ $=\dfrac{cos^2a}{sin^2a}+1$ $=\dfrac{cos^2a+sin^2a}{sin^2a}$ $=\dfrac{1}{sin^2a}= VP$ c, $VT= cos^4a-sin^4a$ $= (cos^2a-sin^2a)(cos^2a+sin^2a)$ $= cos^2a-sin^2a$ $= cos^2a-(1-cos^2a)$ $= 2cos^2a-1= VP$ Bình luận
Đáp án: $\begin{array}{l}a){\tan ^2}a + 1\\ = \dfrac{{{{\sin }^2}a}}{{{{\cos }^2}a}} + 1\\ = \dfrac{{{{\sin }^2}a + {{\cos }^2}a}}{{{{\cos }^2}a}}\\ = \dfrac{1}{{{{\cos }^2}a}}\\Vay\,{\tan ^2}a + 1 = \dfrac{1}{{{{\cos }^2}a}}\\b){\cot ^2}a + 1\\ = \dfrac{{{{\cos }^2}a}}{{{{\sin }^2}a}} + 1\\ = \dfrac{{{{\cos }^2}a + {{\sin }^2}a}}{{{{\sin }^2}a}}\\ = \dfrac{1}{{{{\sin }^2}a}}\\c){\cos ^4}a – {\sin ^4}a\\ = \left( {{{\cos }^2}a + {{\sin }^2}a} \right)\left( {{{\cos }^2}a – {{\sin }^2}a} \right)\\ = 1.\left( {{{\cos }^2}a – \left( {1 – {{\cos }^2}a} \right)} \right)\\ = 2{\cos ^2}a – 1\end{array}$ Bình luận
a,
$VT= tan^2a+1$
$= \dfrac{sin^2a}{cos^2a}+ 1$
$= \dfrac{sin^2a+cos^2a}{cos^2a}$
$= \dfrac{1}{cos^2a}= VP$
b,
$VT= cot^2a+1$
$=\dfrac{cos^2a}{sin^2a}+1$
$=\dfrac{cos^2a+sin^2a}{sin^2a}$
$=\dfrac{1}{sin^2a}= VP$
c,
$VT= cos^4a-sin^4a$
$= (cos^2a-sin^2a)(cos^2a+sin^2a)$
$= cos^2a-sin^2a$
$= cos^2a-(1-cos^2a)$
$= 2cos^2a-1= VP$
Đáp án:
$\begin{array}{l}
a){\tan ^2}a + 1\\
= \dfrac{{{{\sin }^2}a}}{{{{\cos }^2}a}} + 1\\
= \dfrac{{{{\sin }^2}a + {{\cos }^2}a}}{{{{\cos }^2}a}}\\
= \dfrac{1}{{{{\cos }^2}a}}\\
Vay\,{\tan ^2}a + 1 = \dfrac{1}{{{{\cos }^2}a}}\\
b){\cot ^2}a + 1\\
= \dfrac{{{{\cos }^2}a}}{{{{\sin }^2}a}} + 1\\
= \dfrac{{{{\cos }^2}a + {{\sin }^2}a}}{{{{\sin }^2}a}}\\
= \dfrac{1}{{{{\sin }^2}a}}\\
c){\cos ^4}a – {\sin ^4}a\\
= \left( {{{\cos }^2}a + {{\sin }^2}a} \right)\left( {{{\cos }^2}a – {{\sin }^2}a} \right)\\
= 1.\left( {{{\cos }^2}a – \left( {1 – {{\cos }^2}a} \right)} \right)\\
= 2{\cos ^2}a – 1
\end{array}$