Bài 1: Giải BPT: x^2 – 9x +20/x-2 < hoặc = 0 Bài 2: Giải PT chứa dấu GTTĐ: |x+1|+x^2= x|2x-4| MONG CÁC BẠN GIÚP MÌNH. MÌNH CẢM ƠN NHIỀU!
Bài 1: Giải BPT: x^2 – 9x +20/x-2 < hoặc = 0 Bài 2: Giải PT chứa dấu GTTĐ: |x+1|+x^2= x|2x-4| MONG CÁC BẠN GIÚP MÌNH. MÌNH CẢM ƠN NHIỀU!
Giải thích các bước giải:
B1:
ĐKXĐ:$x\ne 2$
Ta có:
$\begin{array}{l}
\dfrac{{{x^2} – 9x + 20}}{{x – 2}} \le 0\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
{x^2} – 9x + 20 \ge 0\\
x – 2 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
{x^2} – 9x + 20 \le 0\\
x – 2 > 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\left( {x – 4} \right)\left( {x – 5} \right) \ge 0\\
x < 2
\end{array} \right.\\
\left\{ \begin{array}{l}
\left( {x – 4} \right)\left( {x – 5} \right) \le 0\\
x > 2
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\left[ \begin{array}{l}
\left\{ \begin{array}{l}
x – 4 \ge 0\\
x – 5 \ge 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x – 4 \le 0\\
x – 5 \le 0
\end{array} \right.
\end{array} \right.\\
x < 2
\end{array} \right.\\
\left\{ \begin{array}{l}
\left[ \begin{array}{l}
\left\{ \begin{array}{l}
x – 4 \ge 0\\
x – 5 \le 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x – 4 \le 0\\
x – 5 \ge 0
\end{array} \right.\left( l \right)
\end{array} \right.\\
x > 2
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\left[ \begin{array}{l}
x \ge 5\\
x \le 4
\end{array} \right.\\
x < 2
\end{array} \right.\\
\left\{ \begin{array}{l}
4 \le x \le 5\\
x > 2
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x < 2\\
4 \le x \le 5
\end{array} \right.
\end{array}$
Vậy tập nghiệm của bất phương trình là $S = \left( { – \infty ; – 2} \right) \cup \left[ {4;5} \right]$
B2:
Phương trình:
$\left| {x + 1} \right| + {x^2} = x\left| {2x – 4} \right|\left( 1 \right)$
$ + )TH1:x < – 1$
Phương trình $(1)$ trở thành:
$\begin{array}{l}
– x – 1 + {x^2} = x.\left( { – 2x + 4} \right)\\
\Leftrightarrow 3{x^2} – 5x – 1 = 0\\
\Leftrightarrow 3\left( {{x^2} – 2.x.\dfrac{5}{6} + \dfrac{{25}}{{36}}} \right) – \dfrac{{37}}{{12}} = 0\\
\Leftrightarrow {\left( {x – \dfrac{5}{6}} \right)^2} = \dfrac{{37}}{{36}}\\
\Leftrightarrow \left[ \begin{array}{l}
x – \dfrac{5}{6} = \dfrac{{\sqrt {37} }}{6}\\
x – \dfrac{5}{6} = – \dfrac{{\sqrt {37} }}{6}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{5 + \sqrt {37} }}{6}\\
x = \dfrac{{5 – \sqrt {37} }}{6}
\end{array} \right.\left( l \right)
\end{array}$
$ + )TH2: – 1 \le x < 2$
Phương trình $(1)$ trở thành:
$\begin{array}{l}
x + 1 + {x^2} = x.\left( { – 2x + 4} \right)\\
\Leftrightarrow 3{x^2} – 3x + 1 = 0\\
\Leftrightarrow 3\left( {{x^2} – 2.x.\dfrac{1}{2} + \dfrac{1}{4}} \right) + \dfrac{1}{4} = 0\\
\Leftrightarrow 3{\left( {x – \dfrac{1}{2}} \right)^2} + \dfrac{1}{4} = 0\left( {vn} \right)
\end{array}$
$ + )TH3:x \ge 2$
Phương trình $(1)$ trở thành:
$\begin{array}{l}
x + 1 + {x^2} = x\left( {2x – 4} \right)\\
\Leftrightarrow {x^2} – 5x – 1 = 0\\
\Leftrightarrow \left( {{x^2} – 2.x.\dfrac{5}{2} + \dfrac{{25}}{4}} \right) – \dfrac{{29}}{4} = 0\\
\Leftrightarrow {\left( {x – \dfrac{5}{2}} \right)^2} = \dfrac{{29}}{4}\\
\Leftrightarrow \left[ \begin{array}{l}
x – \dfrac{5}{2} = \dfrac{{\sqrt {29} }}{2}\\
x – \dfrac{5}{2} = \dfrac{{ – \sqrt {29} }}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{5 + \sqrt {29} }}{2}\left( c \right)\\
x = \dfrac{{5 – \sqrt {29} }}{2}\left( l \right)
\end{array} \right.\\
\Leftrightarrow x = \dfrac{{5 + \sqrt {29} }}{2}
\end{array}$
Vậy phương trình có tập nghiệm: $S = \left\{ {\dfrac{{5 + \sqrt {29} }}{2}} \right\}$