Bài 1: Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu đỏ và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả cầu trắng, 2 quả

Bài 1: Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu đỏ và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả cầu trắng, 2 quả cầu đỏ và 1 quả đen.
Bài 2: Cho một hộp đựng 12 viên bi, trong đó có 7 viên bi màu đỏ, 5 viên bi màu xanh. Lấy ngẫu nhiên mỗi lần 3 viên bi. Tính xác suất trong 2 trường hợp sau:
a) lấy được 3 viên bi màu đỏ
b) lấy được ít nhất 2 viên bi màu đỏ .

0 bình luận về “Bài 1: Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu đỏ và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả cầu trắng, 2 quả”

  1. Đáp án: Bài 1: $P(A)=\dfrac{20}{77}$

                   Bài 2: a) $P(A) =\dfrac{7}{44}$

                              b) $P(B)=\dfrac{7}{11}$

     

    Giải thích các bước giải:

    Bài 1:

    Trong hộp có $6+4+2=12$ quả cầu các loại màu

    Không gian mẫu là chọn ngẫu nhiên 6 quả cầu từ 12 quả:

    $n(\Omega)=C_{12}^6=924$ cách

    Gọi $A$ là biến cố: “chọn được 3 quả cầu trắng, 2 quả cầu đỏ, 1 quả đen”

    Chọn 3 quả trắng từ 6 quả trắng có: $C_6^3$ cách

    Chọn 2 quả đỏ từ 4 quả đỏ có: $C_4^2$ cách

    Chọn 1 quả đen từ 2 quả đen có: $C_2^1$ cách

    Như vậy $n(A)=C_6^3.C_4^2.C_2^1=240$ cách

    Xác suất để chọn được như yêu cầu đề là:

    $P(A)=\dfrac{n(A)}{n(\Omega)}=\dfrac{240}{924}=\dfrac{20}{77}$

     

    Bài 2:

    Không gian mẫu là chọn 3 viên bi từ 12 viên bi: $n(\Omega)=C_{12}^3$

    a) Gọi $A$ là biến cố: “Lấy được 3 viên màu đỏ”

    Chọn 3 viên màu đỏ từ 7 viên màu đỏ: $n(A)=C_7^3$

    Xác suất để lấy được 3 viên màu đỏ là:

    $P(A)=\dfrac{n(A)}{n(\Omega)}=\dfrac{C_7^3}{C_{12}^3}=\dfrac{7}{44}$

     

    b) Gọi $B$ là biến cố: “lấy được ít nhất 2 viên bi màu đỏ”

    Th1: Lấy được 2 bi đỏ và 1 bi không phải màu đỏ có: $C_7^2.C_5^1$ cách

    Th2: Lất được 3 bi đều màu đỏ có: $C_7^3$ cách

    Do đó theo quy tắc cộng $n(B)=C_7^2.C_5^1+C_7^3$

    Xác suất để lấy được ít nhất 2 viên bi đỏ là:

    $P(B)=\dfrac{n(B)}{n(\Omega)}=\dfrac{C_7^2.C_5^1+C_7^3}{C_{12}^3}=\dfrac{7}{11}$

    Bình luận

Viết một bình luận