Bài 1:Tìm x: a,1/5.8+1/8.11+1/11.14+…1/x.(x+3)=101/1540

Bài 1:Tìm x:
a,1/5.8+1/8.11+1/11.14+…1/x.(x+3)=101/1540

0 bình luận về “Bài 1:Tìm x: a,1/5.8+1/8.11+1/11.14+…1/x.(x+3)=101/1540”

  1. Đáp án:

     

    Giải thích các bước giải:

     $\dfrac{1}{5.8}+\dfrac{1}{8.11}+…+\dfrac{1}{x.(x+3)}=\dfrac{101}{1540}$

    $⇔\dfrac{1}{3}.(\dfrac{3}{5.8}+\dfrac{3}{8.11}+…+\dfrac{3}{x.(x+3)}=\dfrac{101}{1540}$

    $ $

    $⇔\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+…+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}$

    $ $

    $⇔\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}$

    $ $

    $⇔\dfrac{1}{x+3}=\dfrac{1}{308}$

    $ $

    $⇒x+3=308$

    $⇒x=305$

    Bình luận
  2. $\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+…+\frac{1}{x(x+3)}=\frac{101}{1540}$

    $⇔\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+…+\frac{3}{x(x+3)}=\frac{303}{1540}$

    $⇔\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+…+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}$

    $⇔\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}$

    $⇔\frac{1}{x+3}=\frac{1}{308}$

    $⇔x+3=308$

    $⇔x=305$

    Vậy $x=305$.

     

    Bình luận

Viết một bình luận