Bài 1 tìm x:
a, $\sqrt[]{-x^2+x+4 }$ =x-3
b, $\sqrt[]{x-3}$ -2$\sqrt[]{x^2-9}$ =0
Bài 2: tìm y biết
$\sqrt[]{4y-20}$ +$\sqrt[]{y-5}$ -$\frac{1}{3}$$\sqrt[]{9y-45}$ =4
Bài 1 tìm x:
a, $\sqrt[]{-x^2+x+4 }$ =x-3
b, $\sqrt[]{x-3}$ -2$\sqrt[]{x^2-9}$ =0
Bài 2: tìm y biết
$\sqrt[]{4y-20}$ +$\sqrt[]{y-5}$ -$\frac{1}{3}$$\sqrt[]{9y-45}$ =4
@nt0950925
Bài 1:
a/ -x²+x+4=x²-6x+9
<=> 2x²-7x+5=0
<=> (x-1)(2x-5)=0
<=>\(\left[ \begin{array}{l}x1=1\\x2=5/2\end{array} \right.\)
b/ $\sqrt[]{x-3}$ =2$\sqrt[]{x^{2}-9}$
<=>$\sqrt[]{x-3}$ =2$\sqrt[]{x-3}$$\sqrt[]{x+3}$
TH1: $\sqrt[]{x-3}$=0 <=> x=3
TH2: 2.$\sqrt[]{x+3}$ =1 <=>$\sqrt[]{x+3}$ =1/2 <=>x=-11/4
Bài 2:
$\sqrt[]{(y-5).4}$+$\sqrt[]{y-5}$-1/3.$\sqrt[]{(y-5).9}$=4
<=>2.$\sqrt[]{(y-5)}$+$\sqrt[]{y-5}$ -$\sqrt[]{(y-5)}$=4
<=>2.$\sqrt[]{(y-5)}$=4
<=>$\sqrt[]{y-5}$=2
<=>y-5=4
<=>y=9