Bài 1: Tìm x, biết:
a/ (x – 3)^2 = 4x^2 – 20x + 25
b/ (x – 1)^2 – (2x + 1)^2 = 0
c/ Tìm a, b, c biết:
(ay^2 + by + c)(y + 3) = y^3 + 2y^2 – 3y với mọi y.
Mong mn lm ra chi tiết nhé
Bài 1: Tìm x, biết:
a/ (x – 3)^2 = 4x^2 – 20x + 25
b/ (x – 1)^2 – (2x + 1)^2 = 0
c/ Tìm a, b, c biết:
(ay^2 + by + c)(y + 3) = y^3 + 2y^2 – 3y với mọi y.
Mong mn lm ra chi tiết nhé
Đáp án:
Giải thích các bước giải:
a)(x-3)²=4x²-20x+25
⇒(x-3)²=(2x-5)²
⇒(x-3)²-(2x-5)²=0
⇒(x-3+2x-5)(x-3-2x+5)=0
⇒(3x-8)(2-x)=0
⇒3x-8=0 hay 2-x=0
⇒x=$\frac{8}{3}$ hãy=2
b)(x-1)²-(2x-1)²=0
⇒(x-1-2x+1)(x-1+2x-1)=0
⇒-x=0 hay 3x-2=0
⇒x=0 ;x=$\frac{2}{3}$
c)(ay²+by+c)(y+3)=y³+2y²-3y
⇔ay³+by²+cy+3ay²+3by+3c=y³+2y²-3y
⇔ay³+(b+3a)y²+(c+3b)y+3c=y³+2y²-3y
đồng nhất hệ số 2 ta có :
a=1
b+3a=2
c+3b=-3
3c=0
⇒a=1
b=-1
c=0
Đáp án: $a)$ \(\left[ \begin{array}{l}x=8/3\\x=2\end{array} \right.\)
$b)$ \(\left[ \begin{array}{l}x=0\\x=-2\end{array} \right.\)
$c)$ $a = 1; b = -1; c= 0$
Giải thích các bước giải:
$Bài$ $1: a)$ $(x – 3)^2 = 4x^2 – 20x + 25$
$<=> x^2 – 6x + 9 = 4x^2 – 20x + 25$
$<=> (x^2 – 4x^2) – (6x – 20x) + (9 – 25) = 0$
$<=> -3x^2 + 14x – 16 = 0$
$<=> -3x^2 + 8x + 6x – 16 = 0$
$<=> (6x -3x^2) + (8x – 16) = 0$
$<=> 3x.(2 -x) – 8.(2 – x) = 0$
$<=> (3x-8)(2 -x) = 0$
$<=>$ \(\left[ \begin{array}{l}3x-8=0\\2-x=0\end{array} \right.\)
$<=>$ \(\left[ \begin{array}{l}x=8/3\\x=2\end{array} \right.\)
—————————————————————————————–
$b)$ $(x – 1)^2 – (2x + 1)^2 = 0$
$<=> x^2 – 2x + 1 – (4x^2 + 4x + 1) = 0$
$<=> x^2 – 2x + 1 – 4x^2 – 4x – 1 = 0$
$<=> (x^2 – 4x^2) + (- 2x – 4x) + (1 – 1) = 0$
$<=> -3x^2 – 6x = 0$
$<=> -3x.(x + 2) = 0$
$<=>$ \(\left[ \begin{array}{l}-3x=0\\x+2=0\end{array} \right.\)
$<=>$ \(\left[ \begin{array}{l}x=0\\x=-2\end{array} \right.\)
—————————————————————————————–
$c)$ $(ay^2 + by + c)(y + 3) = y^3 + 2y^2 – 3y$
$<=> (ay^2 + by + c)(y + 3) = y^3 + 3y^2 – y^2 – 3y$
$<=> (ay^2 + by + c)(y + 3) = y^2.(y + 3) – y.(y + 3)$
$<=> (ay^2 + by + c)(y + 3) = (y^2-y)(y + 3)$
$<=> \dfrac{(ay^2 + by + c)(y + 3)}{(y + 3)}= \dfrac{(y^2-y)(y + 3)}{(y + 3)}$
$=> ay^2 + by + c = y^2 – y$
$=> a = 1; b = -1; c= 0$