bài 1 tính A=(1+1/2).(1+1/3).(1+1/4)…(1+1/99) B= 3/4.8/9.15/16…899/900

bài 1 tính
A=(1+1/2).(1+1/3).(1+1/4)…(1+1/99)
B= 3/4.8/9.15/16…899/900

0 bình luận về “bài 1 tính A=(1+1/2).(1+1/3).(1+1/4)…(1+1/99) B= 3/4.8/9.15/16…899/900”

  1. Ta có:

    A=(1+$\frac{1}{2}$)(1+$\frac{1}{3}$)(1+$\frac{1}{4}$)……(1+$\frac{1}{99}$) 

       =($\frac{2}{2}$+$\frac{1}{2}$)($\frac{3}{3}$+$\frac{1}{3}$)($\frac{4}{4}$+$\frac{1}{4}$)+……+( $\frac{99}{99}$+$\frac{1}{99}$) 

       = $\frac{3}{2}$.$\frac{4}{3}$.$\frac{5}{4}$……….$\frac{100}{99}$ 

       =$\frac{3.4.5…..100}{2.3.4…..99}$ 

       =  $\frac{100}{2}$=50 

    B=$\frac{3}{4}$.$\frac{8}{9}$.$\frac{15}{16}$…….$\frac{899}{900}$ 

       =$\frac{1.3}{2.2}$.$\frac{2.4}{3.3}$.$\frac{3.5}{4.4}$…..$\frac{29.31}{30.30}$ 

       = $\frac{1.2.3…..29}{2.3.4…..30}$.$\frac{3.4.5…..31}{2.3.4…..30}$ 

       = $\frac{1}{30}$.$\frac{31}{2}$=$\frac{31}{60}$ 

    Chúc học tốt!!!

     

    Bình luận
  2. A=(1+$\frac{1}{2}$).(1+$\frac{1}{3}$).(1+$\frac{1}{4}$)+…+(1+ $\frac{1}{99}$)
    =($\frac{2}{2}$ +$\frac{1}{2}$).($\frac{3}{3}$+$\frac{1}{3}$).($\frac{4}{4}$+$\frac{1}{4}$)+…+($\frac{99}{99}$+$\frac{1}{99}$)
    = $\frac{3}{2}$.$\frac{4}{3}$.$\frac{5}{4}$+…+$\frac{100}{99}$
    =$\frac{100}{2}$ 
    =50
    B=$\frac{3}{4}$.$\frac{8}{9}$.$\frac{15}{16}$….$\frac{899}{900}$ 
    =$\frac{1.3}{2^2}$.$\frac{2.4}{3^3}$.$\frac{3.5}{4^2}$….$\frac{29.31}{30^2}$ 
    =$\frac{(1.2.3…29)(3.4.5.31)}{(2.3.4….30)(2.3.4….30)}$
    =$\frac{1.2.3…29}{2.3.4….30}$.$\frac{3.4.5…31}{2.3.4….30}$
    =$\frac{1}{30}$.$\frac{31}{2}$ 
    =$\frac{31}{60}$.

    Bình luận

Viết một bình luận