bài 1: Tính
a,2x-1/x^3+3x/x^3+1+6/x^3+1
b,1/2x-3-1/2x+3-10x+9/9-4x^2
bài 2: Phân tích thành nhân tử
a, 4x^3-4x^2+x
b,3x-3y+x^2-y^2
c,x^2+4xy-4y^2-1
d,16(2-3x)+x^2(3x-2)
bài 3: tính
x-1/x+2+4x+4/x^2-4+3/2-x
mong các bạn giúp mình với ạ
Đáp án:
B3:
\(\dfrac{x}{{x + 2}}\)
Giải thích các bước giải:
\(\begin{array}{l}
B1:\\
a)\dfrac{{2x – 1}}{{3{x^3}}} + \dfrac{{3x}}{{{x^3} + 1}} + \dfrac{6}{{{x^3} + 1}}\\
= \dfrac{{\left( {{x^3} + 1} \right)\left( {2x – 1} \right) + \left( {3x + 6} \right).3{x^3}}}{{3{x^3}\left( {{x^3} + 1} \right)}}\\
= \dfrac{{2{x^4} – {x^3} + 2x – 1 + 9{x^4} + 18{x^3}}}{{3{x^3}\left( {{x^3} + 1} \right)}}\\
= \dfrac{{11{x^4} + 17{x^3} + 2x – 1}}{{3{x^3}\left( {{x^3} + 1} \right)}}\\
b)\dfrac{1}{{2x – 3}} – \dfrac{1}{{2x + 3}} – \dfrac{{10x + 9}}{{9 – 4{x^2}}}\\
= \dfrac{{2x + 3 – 2x + 3 + 10x + 9}}{{\left( {2x – 3} \right)\left( {2x + 3} \right)}}\\
= \dfrac{{10x + 15}}{{\left( {2x – 3} \right)\left( {2x + 3} \right)}} = \dfrac{{5\left( {2x + 3} \right)}}{{\left( {2x – 3} \right)\left( {2x + 3} \right)}}\\
= \dfrac{5}{{2x – 3}}\\
B2:\\
a)4{x^3} – 4{x^2} + x = x\left( {4{x^2} – 4x + 1} \right)\\
= x{\left( {2x – 1} \right)^2}\\
b)3x – 3y + {x^2} – {y^2}\\
= 3\left( {x – y} \right) + \left( {x – y} \right)\left( {x + y} \right)\\
= \left( {x – y} \right)\left( {3 + x + y} \right)\\
c){x^2} + 4xy – 4{y^2} – 1\\
= {\left( {x – 2y} \right)^2} – 1\\
= \left( {x – 2y + 1} \right)\left( {x – 2y – 1} \right)\\
d)16(2 – 3x) + {x^2}(3x – 2)\\
= – 16(3x – 2) + {x^2}(3x – 2)\\
= \left( {3x – 2} \right)\left( {{x^2} – 16} \right)\\
= \left( {3x – 2} \right)\left( {x – 4} \right)\left( {x + 4} \right)\\
B3:\\
\dfrac{{x – 1}}{{x + 2}} + \dfrac{{4x + 4}}{{{x^2} – 4}} + \dfrac{3}{{2 – x}}\\
= \dfrac{{\left( {x – 1} \right)\left( {x – 2} \right) + 4x + 4 – 3\left( {x + 2} \right)}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}\\
= \dfrac{{{x^2} – 3x + 2 + 4x + 4 – 3x – 6}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}\\
= \dfrac{{{x^2} – 2x}}{{\left( {x – 2} \right)\left( {x + 2} \right)}}\\
= \dfrac{x}{{x + 2}}
\end{array}\)