Bài 1 tính nhanh A = $\frac{1}{99}$ – $\frac{1}{99 . 98}$ – $\frac{1}{98 . 97}$ …….$\frac{1}{2 . 1}$ 29/07/2021 Bởi Remi Bài 1 tính nhanh A = $\frac{1}{99}$ – $\frac{1}{99 . 98}$ – $\frac{1}{98 . 97}$ …….$\frac{1}{2 . 1}$
A=$\frac{1}{99}$ -$\frac{1}{99.98}$ -$\frac{1}{98.97}$ -…-$\frac{1}{2.1}$ A=$\frac{1}{99}$ -($\frac{1}{1.2}$ +…+$\frac{1}{97.98}$ +$\frac{1}{98.99}$ ) A=$\frac{1}{99}$ -(1-$\frac{1}{99}$ ) A=$\frac{1}{99}$ -$\frac{98}{99}$ A=$\frac{-97}{99}$ Bình luận
`A = 1/{99} – 1/{99.98} – 1/{98.97} – …. – 1/{2.1}` `A = 1/99 – (1/{1.2} + …. + 1/{97.98} + 1/{98.99})` `A = 1/99 – (1/1 – 1/2 + …. + 1/{97} – 1/{98} + 1/{98} – 1/{99})` `A = 1/99 – (1 – 1/99)` `A = 1/99 – 1 + 1/99` `A = 2/99 – 1` `A = -97/99`. Bình luận
A=$\frac{1}{99}$ -$\frac{1}{99.98}$ -$\frac{1}{98.97}$ -…-$\frac{1}{2.1}$
A=$\frac{1}{99}$ -($\frac{1}{1.2}$ +…+$\frac{1}{97.98}$ +$\frac{1}{98.99}$ )
A=$\frac{1}{99}$ -(1-$\frac{1}{99}$ )
A=$\frac{1}{99}$ -$\frac{98}{99}$
A=$\frac{-97}{99}$
`A = 1/{99} – 1/{99.98} – 1/{98.97} – …. – 1/{2.1}`
`A = 1/99 – (1/{1.2} + …. + 1/{97.98} + 1/{98.99})`
`A = 1/99 – (1/1 – 1/2 + …. + 1/{97} – 1/{98} + 1/{98} – 1/{99})`
`A = 1/99 – (1 – 1/99)`
`A = 1/99 – 1 + 1/99`
`A = 2/99 – 1`
`A = -97/99`.