Bài 2: Tìm x a) x + 3/21 = 8/7 b) |x+2| – 1/3 = 5/6 c) 4/5 – 1/3 . ( x+ 3/2 ) = 7/15

Bài 2: Tìm x
a) x + 3/21 = 8/7
b) |x+2| – 1/3 = 5/6
c) 4/5 – 1/3 . ( x+ 3/2 ) = 7/15

0 bình luận về “Bài 2: Tìm x a) x + 3/21 = 8/7 b) |x+2| – 1/3 = 5/6 c) 4/5 – 1/3 . ( x+ 3/2 ) = 7/15”

  1. a, `x + 3/21 = 8/7`

        `x + 1/7   = 8/7`

        `x             = 8/7 – 1/7`

        `x             = 1`

      Vậy `x=1`

    b, `|x+2| – 1/3 = 5/6`

        `|x+2|          = 5/6 + 2/6`

        `|x+2|          = 7/6`

    `=>` \(\left[ \begin{array}{l}x+2=\frac{7}{6}\\x+2=\frac{-7}{6}\end{array} \right.\) 

    `=>` \(\left[ \begin{array}{l}x=\frac{-5}{6}\\x=\frac{-19}{6}\end{array} \right.\)

      Vậy \(\left[ \begin{array}{l}x=\frac{-5}{6}\\x=\frac{-19}{6}\end{array} \right.\) 

    c, `4/5 – 1/3 . ( x + 3/2 ) = 7/15`

                `1/3 . ( x + 3/2 ) = 4/5 – 7/15`

                `1/3 . ( x + 3/2 ) = 1/3`

                           `x + 3/2   = 1`

                           `x             = -1/2`

        Vậy `x=-1/2`

    Bình luận
  2. Đáp án:

     `x=1`

    `x\in{-5/6;-19/6}`

    `x=-1/2`

    Giải thích các bước giải:

     `x+ 3/21 = 8/7`

    `x = 8/7 – 3/21 `

    `x= 8/7 – 1/7 `

    `x=(8-1)/7`

    `x=7/7`

    `x=1 `

    vậy `x=1` 

    `|x+2| – 1/3 = 5/6 `

    `|x+2 | = 5/6 + 1/3 `

    `|x+2| = 7/6 `

    \(\left[ \begin{array}{l}x+2= \dfrac{7}{6}\\x+2= \dfrac{-7}{6}\end{array} \right.\) 

    \(\left[ \begin{array}{l}x= \dfrac{7}{6}-2\\x= \dfrac{-7}{6}-2\end{array} \right.\) 

    \(\left[ \begin{array}{l}x= \dfrac{-5}{6}\\x= \dfrac{-19}{6}\end{array} \right.\) 

    vậy `x\in{-5/6;-19/6}`

    `4/5 – 1/3 . ( x+ 3/2 ) = 7/15`

    ` 1/3.(x+3/2) = 4/5 – 7/15 `

    ` 1/3.(x+3/2)=1/3 `

    `x+3/2 = 1/3  :1/3 `

    `x+3/2 = 1 `

    `x = 1-3/2 `

    `x=-1/2`

    vậy `x=-1/2`

    Bình luận

Viết một bình luận