Bài 2 tìm x a, 3/7-1/7 : |2x-1/3|=3/14 b, x+7/2018 + x+6/2019 + x+5/2020 + x+4/2021 20/07/2021 Bởi Adalynn Bài 2 tìm x a, 3/7-1/7 : |2x-1/3|=3/14 b, x+7/2018 + x+6/2019 + x+5/2020 + x+4/2021
Đáp án: a, `3/7 – 1/7 : |2x – 1/3| = 3/14` `<=> 1/7 : |2x – 1/3| = 3/7 – 3/14` `<=> 1/7 : |2x – 1/3| = 3/14` `<=> |2x – 1/3| = 1/7 : 3/14` `<=> |2x – 1/3| = 2/3` <=> \(\left[ \begin{array}{l}2x – 1/3 = 2/3\\2x – 1/3 = -2/3\end{array} \right.\) <=> \(\left[ \begin{array}{l}x= 1/2\\x=-1/6\end{array} \right.\) b, Ta có : `(x + 7)/2018 + (x + 6)/2019 = (x + 5)/2020 + (x + 4)/2021` `<=> ((x + 7)/2018 + 1) + ((x + 6)/2019 + 1) = ((x + 5)/2020 + 1) + ((x + 4)/2021 + 1)` `<=> (x + 2025)/2018 + (x + 2025)/2019 = (x + 2025)/2020 + (x + 2025)/2021` `<=> (x + 2025)/2018 + (x + 2025)/2019 – (x + 2025)/2020 – (x + 2025)/2021 = 0` `<=> (x + 2025) . (1/2018 + 1/2019 – 1/2020 – 1/2021) = 0` Do `1/2018 + 1/2019 – 1/2020 – 1/2021 \ne 0` `<=> x + 2025 = 0` `<=> x = -2025` Giải thích các bước giải: Bình luận
Đáp án: Giải thích các bước giải: a) `3/7-1/7:|2x-1/3|=3/14` `⇔1/7:|2x-1/3|=3/7-3/14` `⇔1/7:|2x-1/3|=3/14` `⇔|2x-1/3|=1/7.(14/3)` `⇔|2x-1/3|=2/3` `⇔2x-1/3=2/3 hoặc 2x-1/3=-2/3` `⇔2x=1 hoặc 2x=-1/3` `⇔x=1/2 hoặc x=-1/6` vậy `S={1/2;-1/6}` b) `(x+7)/2018+(x+6)/2019=(x+5)/2020+(x+4)/2021` `⇔[(x+7)/2018+1]+[(x+6)/2019+1]=[(x+5)/2020+1]+[(x+4)/2021+1]` `⇔(x+7+2018)/2018+(x+6+2019)/2019-(x+5+2020)/2020-(x+4+2021)/2021=0` `⇔(x+2025)/2018+(x+2025)/2019-(x+2025)/2020-(x+2025)/2021=0` `⇔(x+2025)(1/2018+1/2019-1/2020-1/2021)=0` do `1/2018+1/2019-1/2020-1/2021` khác 0 `⇒x+2025=0⇔x=-2025` vậy `S={-2025}` Bình luận
Đáp án:
a, `3/7 – 1/7 : |2x – 1/3| = 3/14`
`<=> 1/7 : |2x – 1/3| = 3/7 – 3/14`
`<=> 1/7 : |2x – 1/3| = 3/14`
`<=> |2x – 1/3| = 1/7 : 3/14`
`<=> |2x – 1/3| = 2/3`
<=> \(\left[ \begin{array}{l}2x – 1/3 = 2/3\\2x – 1/3 = -2/3\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x= 1/2\\x=-1/6\end{array} \right.\)
b, Ta có :
`(x + 7)/2018 + (x + 6)/2019 = (x + 5)/2020 + (x + 4)/2021`
`<=> ((x + 7)/2018 + 1) + ((x + 6)/2019 + 1) = ((x + 5)/2020 + 1) + ((x + 4)/2021 + 1)`
`<=> (x + 2025)/2018 + (x + 2025)/2019 = (x + 2025)/2020 + (x + 2025)/2021`
`<=> (x + 2025)/2018 + (x + 2025)/2019 – (x + 2025)/2020 – (x + 2025)/2021 = 0`
`<=> (x + 2025) . (1/2018 + 1/2019 – 1/2020 – 1/2021) = 0`
Do `1/2018 + 1/2019 – 1/2020 – 1/2021 \ne 0`
`<=> x + 2025 = 0`
`<=> x = -2025`
Giải thích các bước giải:
Đáp án:
Giải thích các bước giải:
a) `3/7-1/7:|2x-1/3|=3/14`
`⇔1/7:|2x-1/3|=3/7-3/14`
`⇔1/7:|2x-1/3|=3/14`
`⇔|2x-1/3|=1/7.(14/3)`
`⇔|2x-1/3|=2/3`
`⇔2x-1/3=2/3 hoặc 2x-1/3=-2/3`
`⇔2x=1 hoặc 2x=-1/3`
`⇔x=1/2 hoặc x=-1/6`
vậy `S={1/2;-1/6}`
b) `(x+7)/2018+(x+6)/2019=(x+5)/2020+(x+4)/2021`
`⇔[(x+7)/2018+1]+[(x+6)/2019+1]=[(x+5)/2020+1]+[(x+4)/2021+1]`
`⇔(x+7+2018)/2018+(x+6+2019)/2019-(x+5+2020)/2020-(x+4+2021)/2021=0`
`⇔(x+2025)/2018+(x+2025)/2019-(x+2025)/2020-(x+2025)/2021=0`
`⇔(x+2025)(1/2018+1/2019-1/2020-1/2021)=0`
do `1/2018+1/2019-1/2020-1/2021` khác 0
`⇒x+2025=0⇔x=-2025`
vậy `S={-2025}`