Bài 2: Tìm x Z sao cho: a. (x + 1).(3 – x) = 0 b. (x – 2).(2x – 1) = 0 c. (3x + 9).(1 – 3x) = 0 d. (x

Bài 2: Tìm x Z sao cho:
a. (x + 1).(3 – x) = 0 b. (x – 2).(2x – 1) = 0 c. (3x + 9).(1 – 3x) = 0
d. (x2 + 1).(81 – x2 ) = 0 e. (x – 5)5 = 32 f. (2 – x)4 = 81
g. (31 – 2x)3 = -27 h. (x – 2).(7 – x) > 0 i. |x – 7| ≤ 3
Đánh máy ra

0 bình luận về “Bài 2: Tìm x Z sao cho: a. (x + 1).(3 – x) = 0 b. (x – 2).(2x – 1) = 0 c. (3x + 9).(1 – 3x) = 0 d. (x”

  1. Giải thích các bước giải :

    `a)(x+1)(3-x)=0`

    `<=>`\(\left[ \begin{array}{l}x+1=0\\3-x=0\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=-1\\x=3\end{array} \right.\) 

    Vậy : \(\left[ \begin{array}{l}x=-1\\x=3\end{array} \right.\) 

    `b)(x-2)(2x-1)=0`

    `<=>`\(\left[ \begin{array}{l}x-2=0\\2x-1=0\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=2\\2x=1\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=2\\x=\frac{1}{2}\end{array} \right.\)

    Vậy : \(\left[ \begin{array}{l}x=2\\x=\frac{1}{2}\end{array} \right.\)

    `c)(3x+9)(1-3x)=0`

    `<=>3(x+3)(1-3x)=0`

    `<=>(x+3)(1-3x)=0`

    `<=>`\(\left[ \begin{array}{l}x+3=0\\1-3x=0\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=-3\\3x=1\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=2\\x=\frac{1}{3}\end{array} \right.\)

    Vậy : \(\left[ \begin{array}{l}x=2\\x=\frac{1}{3}\end{array} \right.\)

    `d)(x^2+1)(81-x^2)=0`

    Vì `x^2 ≥ 0 => x^2+1 >0 => x^2+1 \ne 0`

    `=>81-x^2=0`

    `<=>x^2=81`

    `<=>x^2=(±9)^2`

    `<=>x=±9`

    Vậy `x=±9`

    `e)(x-5)^5=32`

    `<=>(x-5)^5=2^5`

    `<=>x-5=2`

    `<=>x=2+5`

    `<=>x=7`

    Vậy `x=7`

    `f)(2-x)^4=81`

    `<=>(2-x)^4=(±3)^4`

    `<=>`\(\left[ \begin{array}{l}2-x=3\\2-x=-3\end{array} \right.\) 

    `<=>`\(\left[ \begin{array}{l}x=-1\\x=5\end{array} \right.\) 

    Vậy : \(\left[ \begin{array}{l}x=-1\\x=5\end{array} \right.\) 

    `g)(31-2x)^3=-27`

    `<=>(31-2x)^3=(-3)^3`

    `<=>31-2x=-3`

    `<=>2x=34`

    `<=>x=17`

    Vậy `x=17`

    `h)(x-2)(7-x)>0`

    `<=>`\(\left[ \begin{array}{l}\left \{ {{x-2>0} \atop {7-x>0}} \right. \\\left \{ {{x-2<0} \atop {7-x<0}} \right. \end{array} \right.\)

    `<=>`\(\left[ \begin{array}{l}\left \{ {{x>2} \atop {x<7}}=>2<x<7 ™ \right. \\\left \{ {{x<2} \atop {x>7}}=>7<x<2(Loại) \right. \end{array} \right.\)

    Vậy `2<x<7`

    `i)|x-7| ≤ 3`

    `<=>-3 ≤ x-7 ≤ 3`

    `<=>-3+7 ≤ x-7+7 ≤ 3+7`

    `<=>4 ≤ x ≤ 10`

    Vậy `4≤x≤10`

    Bình luận
  2. Bài 2:

    a, ( x + 1 ) ( 3 – x ) = 0

    `=>` \(\left[ \begin{array}{l}x+1=0\\3-x=0\end{array} \right.\) 

    `=>` \(\left[ \begin{array}{l}x=-1\\x=3\end{array} \right.\) 

       Vậy x ∈ { -1 ; 3 }

    b, ( x – 2 ) ( 2x – 1 ) = 0

    `=>` \(\left[ \begin{array}{l}x-2=0\\2x-1=0\end{array} \right.\) 

    `=>` \(\left[ \begin{array}{l}x=2\\x =\frac{1}{2}\end{array} \right.\) 

       Vậy x ∈ { 2 ; `1/2` }

    c, ( 3x + 9 ) ( 1 – 3x ) = 0

    `=>` \(\left[ \begin{array}{l}3x+9=0\\1-3x=0\end{array} \right.\) 

    `=>` \(\left[ \begin{array}{l}x=-3\\x=\frac{1}{3}\end{array} \right.\) 

    d, ( x² + 1 ) ( 81 – x² ) = 0 

    `=>` \(\left[ \begin{array}{l}x^2+1=0\\81-x^2=0\end{array} \right.\) 

    `=>` \(\left[ \begin{array}{l}x=-1(vô lí)\\x=9\end{array} \right.\) 

    `=>` \(\left[ \begin{array}{l}x^2=-1(loại)\\x=±9\end{array} \right.\) 

        Vậy x ∈ { ±9 }

    e, `(x-5)^5` = 32

        `(x-5)^5` = `2^5`

    `=>` x – 5 = 5

    `=>` x       = 10

       Vậy x = 10

    f, `(2-x)^4` = 81

    `=>` `(2-x)^4` = `3^4`

    `=>` 2 – x = 3

    `=>`      x  = -1

       Vậy x = -1

    g, `(31-2x)^3` = -27

        `(31-2x)^3` = `(-3)^3`

    `=>` 31 – 2x = -3

    `=>`        2x = 34

    `=>`          x = 17

       Vậy x = 17

    h, ( x – 2 ) ( 7 – x ) > 0

    `=>` x – 2 và 7 – x cùng dấu

    +, Với x – 2 > 0 `=>` 7 – x > 0

    `=>` x > 2 và x < 7 ( t/m )

    +, Với x – 2 < 0 `=>` 7 – x < 0

    `=>` x < 2 và x > 7 ( vô lí )

       Vậy 2 < x < 7

    i, | x – 7 | ≤ 3

    `=>` x – 7 ∈ { 0 ; ±1; ±2 ; ±3 }

    `=>` x ∈ { 7; 8; 6; 9; 5; 10; 4 }
       Vậy x ∈ { 7; 8; 6; 9; 5; 10; 4 }

    Bình luận

Viết một bình luận