Bài 5: Cho ΔABC vuông tại C (AC < BC), gọi I là trung điểm của AB. Kẻ IE ⊥ BC tại E, kẻ IF ⊥ BC tại F. a. Chứng minh tứ giác CEIF là hình chữ nhật. b. Gọi H là điểm đối xứng của I qua F. Chứng minh rằng tứ giác CHFE là hình bình hành. CI cắt BF tại G, O là trung điểm của FI. Chứng minh ba điểm A, O, G thẳng hàng.
Đáp án:
Giải thích các bước giải:
a.
Vì ΔABC vuông tại C nên ∠C = 90o
Ta lại có: IE ⊥ BC tại E và IF ⊥ AC tại F.
⇒ ∠E = 90o, ∠F = 90o
Xét tứ giác IFCE ta có: ∠C = ∠E = ∠F = 90o
⇒ Tứ giác IFCE là hình chữ nhật (dấu hiệu nhận biết).
b.
Vì tứ giác IFCE là hình chữ nhật nên IF = CE và IF // CE.
Vì H là điểm đối xứng của I qua F nên IF = HF và H, F, I thẳng hàng.
⇒ CE = HF và CE // HF
⇒ Tứ giác CHFE là hình bình hàng (dấu hiệu nhận biết hình bình hành)
c.
*) Chứng minh A, G, E thẳng hàng
Giả sử BF ∩ CI = {G}
Xét tam giác ABC ta có:
IA = IB
IF // BC
⇒ F là trung điểm AC.
Tương tự, E là trung điểm của BC
⇒ BF là đường trung tuyến của ΔABC; AE là là đường trung tuyến của ΔABC
Mà CI là là đường trung tuyến của ΔABC và BF ∩ CI = {G}
⇒ G là trọng tâm của ΔABC
⇒ A, G, E thẳng hàng (1)
*) Chứng minh A, O, E thẳng hàng
Ta có:
Mà O là trung điểm của IF nên O là trung điểm của AE.
⇒ A, O, E thẳng hàng (2)
Từ (1) và (2) suy ra A, O, G thẳng hàng.