Bài 5: Cho tam giác ABC. Từ trung điểm M của BC, kẻ MD // AB (D thuộc AC) và ME // AC (E thuộc AB) . Chứng minh rằng: a. Tam giác EBM bằng tam giác DMC. b. Tam giác EDM bằng tam giácCMD c. ED = ½ BC
Bài 5: Cho tam giác ABC. Từ trung điểm M của BC, kẻ MD // AB (D thuộc AC) và ME // AC (E thuộc AB) . Chứng minh rằng: a. Tam giác EBM bằng tam giác DMC. b. Tam giác EDM bằng tam giácCMD c. ED = ½ BC
Đáp án:
a) EM // AC => ACB = EMB ( đồng vị) (đpcm)
b) Xét t/g EBM và t/g DMC có:
EMB = DCM (câu a)
BM = CM (gt)
MBE = CMD ( đồng vị)
Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm)
=> EM = CD (2 cạnh tương ứng)
c) Xét t/g EDM và t/g CMD có:
EM = CD (câu b)
EMD = CDM (so le trong)
DM là cạnh chung
Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm)
=> ED = CM (2 cạnh tương ứng)
d) Có: ED = CM (câu c)
Lại có: CM = BM (gt)
=> ED = CM = BM
=> ED = 1/2.(CM + BM) = 1/2 BC (đpcm)
a) EM // AC => ACB = EMB ( đồng vị) (đpcm)
b) Xét t/g EBM và t/g DMC có:
EMB = DCM (câu a)
BM = CM (gt)
MBE = CMD ( đồng vị)
Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm)
=> EM = CD (2 cạnh tương ứng)
c) Xét t/g EDM và t/g CMD có:
EM = CD (câu b)
EMD = CDM (so le trong)
DM là cạnh chung
Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm)
=> ED = CM (2 cạnh tương ứng)
d) Có: ED = CM (câu c)
Lại có: CM = BM (gt)
=> ED = CM = BM
=> ED = 1/2.(CM + BM) = 1/2 BC (đpcm