Bài 5: Tìm x, biết: a) 2/3x (x ² – 4) = 0 b) x ² – 3x = 0 c) x ² – 25 = 0 02/07/2021 Bởi Ximena Bài 5: Tìm x, biết: a) 2/3x (x ² – 4) = 0 b) x ² – 3x = 0 c) x ² – 25 = 0
a) $\dfrac{2}{3}x(x^2-4)=0$ \(↔\left[ \begin{array}{l}\dfrac{2}{3}x=0\\x^2-4=0\end{array} \right.\) \(↔\left[ \begin{array}{l}x=0\\x^2=4\end{array} \right.\) \(↔\left[ \begin{array}{l}x=0\\x=2;-2\end{array} \right.\) Vậy $x=\{0;2;-2\}$ b) $x^2-3x=0$ $↔x(x-3)=0$ \(↔\left[ \begin{array}{l}x=0\\x-3=0\end{array} \right.\) \(↔\left[ \begin{array}{l}x=0\\x=3\end{array} \right.\) Vậy $x=\{0;3\}$ c) $x^2-25=0$ $↔x^2-5^2=0$ $↔(x-5)(x+5)=0$ \(↔\left[ \begin{array}{l}x-5=0\\x+5=0\end{array} \right.\) \(↔\left[ \begin{array}{l}x=5\\x=-5\end{array} \right.\) Vậy $x=\{5;-5\}$ Bình luận
a) `2/3x(x^2-4)=0` `⇒2/3x(x-2)(x+2)=0` \(⇒\left[ \begin{array}{l}x=0\\x-2=0\\x+2=0\end{array} \right.\) \(⇒\left[ \begin{array}{l}x=0\\x=2\\x=-2\end{array} \right.\) Vậy `x=0; ±2` b) `x^2-3x=0` `x(x-3)=0` \(⇒\left[ \begin{array}{l}x=0\\x-3=0⇒x=3\end{array} \right.\) Vậy `x=0; 3` c) `x^2-25=0` `⇒(x-5)(x+5)=0` \(⇒\left[ \begin{array}{l}x-5=0\\x+5=0\end{array} \right.\) \(⇒\left[ \begin{array}{l}x=5\\x=-5\end{array} \right.\) Vậy `x=±5` Bình luận
a) $\dfrac{2}{3}x(x^2-4)=0$
\(↔\left[ \begin{array}{l}\dfrac{2}{3}x=0\\x^2-4=0\end{array} \right.\)
\(↔\left[ \begin{array}{l}x=0\\x^2=4\end{array} \right.\)
\(↔\left[ \begin{array}{l}x=0\\x=2;-2\end{array} \right.\)
Vậy $x=\{0;2;-2\}$
b) $x^2-3x=0$
$↔x(x-3)=0$
\(↔\left[ \begin{array}{l}x=0\\x-3=0\end{array} \right.\)
\(↔\left[ \begin{array}{l}x=0\\x=3\end{array} \right.\)
Vậy $x=\{0;3\}$
c) $x^2-25=0$
$↔x^2-5^2=0$
$↔(x-5)(x+5)=0$
\(↔\left[ \begin{array}{l}x-5=0\\x+5=0\end{array} \right.\)
\(↔\left[ \begin{array}{l}x=5\\x=-5\end{array} \right.\)
Vậy $x=\{5;-5\}$
a) `2/3x(x^2-4)=0`
`⇒2/3x(x-2)(x+2)=0`
\(⇒\left[ \begin{array}{l}x=0\\x-2=0\\x+2=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=0\\x=2\\x=-2\end{array} \right.\)
Vậy `x=0; ±2`
b) `x^2-3x=0`
`x(x-3)=0`
\(⇒\left[ \begin{array}{l}x=0\\x-3=0⇒x=3\end{array} \right.\)
Vậy `x=0; 3`
c) `x^2-25=0`
`⇒(x-5)(x+5)=0`
\(⇒\left[ \begin{array}{l}x-5=0\\x+5=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=5\\x=-5\end{array} \right.\)
Vậy `x=±5`