Bài 6: Cho pt: x² – ( m – 1 ). x – 3 = 0 Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn x1 – x2 = 4 NO SPAM :(

Bài 6: Cho pt: x² – ( m – 1 ). x – 3 = 0
Tìm m để pt có 2 nghiệm
x1 ; x2 thỏa mãn x1 – x2 = 4
NO SPAM 🙁

0 bình luận về “Bài 6: Cho pt: x² – ( m – 1 ). x – 3 = 0 Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn x1 – x2 = 4 NO SPAM :(”

  1. Đáp án:

     

    Giải thích các bước giải:

     $\Delta$ = $(m – 1)^2$ + 12 > 0 vơi mọi m nên pt luôn có hai nghiệm phân biệt. 

    Khi đó: 

    $x_1 + x_2$ = m – 1 (1)

    $x_1.x_2$ = – 3 (2) 

    Theo bài ra thì $x_1 – x_2$ = 4 (3)

     Từ (3) suy ra: $x_1$ = $x_2$ + 4, thay vào (2) ta được: $x_2(x_2 + 4) = – 3$

    <=> $x_{2}^2 + 4x_2 + 3 = 0$

    Giải ra được: $x_2$ = – 1 => $x_1$ = 3 (4)

                hoặc $x_2$ = – 3 => $x_1$ = – 1 (5) 

    Thay $x_1$; $x_2$ từ (4) và (5) vào (1) ta có: 

    – 1 + 3 = m – 1 <=> m = 3

    hoặc: – 3 + (- 1) = m – 1 <=> m = – 3. 

    Vậy với m = 3 hoặc m = – 3 thì …

    Bình luận

Viết một bình luận