Bài 6: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Trên tia đối của tia ED lấy điểm F sao cho EF = ED . Chứng minh rằng
a) BD = CF
b) DE // BC, DE = 1 phần 2 BC
Bài 6: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Trên tia đối của tia ED lấy điểm F sao cho EF = ED . Chứng minh rằng
a) BD = CF
b) DE // BC, DE = 1 phần 2 BC
Đáp án:
Giải thích các bước giải:
các bước giải:
Xét tam giác AED và tam giác CEF có:
AE = CE (E là trung điểm của AC)
AED = CEF (2 góc đối đỉnh)
ED = EF (E là trung điểm của DF)
=> Tam giác AED = Tam giác CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF
ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF
Xét tam giác BDC và tam giác FCD có:
BD = FC (chứng minh trên)
BDC = FCD (2 góc so le trong, AD // CF)
CD chung
=> Tam giác BDC = Tam giác FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC
BC = FD (2 cạnh tương ứng) mà DE = 1/2FD(E là trung điểm của FD) => DE = 1/2BC