BÀI 6 ;so sánh

BÀI 6 ;so sánh a,5^36 và 11^24
b,3^2n và 2^3n
BÀI 7:tìm số tự nhiên n để
3n+1:11-2n

0 bình luận về “BÀI 6 ;so sánh”

  1. a) Ta có

    $5^{36} = 5^{3.12} = (5^3)^{12} = 125^{12}$

    $11^{24} = 11^{2.12} = (11^2)^{12} = 121^{12}$

    Ta thấy rằng $121<125$ nên $121^{12} < 125^{12}$

    Do đó $11^{24} < 5^{36}$

    b) Ta có

    $3^{2n} = (3^2)^n = 9^n$
    $2^{3n} = (2^3)^n = 8^n$
    Ta có $8 <9$ nên $8^n < 9^n$

    Do đó $2^{3n} < 3^{2n}$

    Bài 7

    Ta có $3n + 1$ chia hết cho $11 – 2n $ nên

    $2(3n+1) + 3(11-2n) $ chia hết cho $11-2n$

    $<-> 35$ chia hết cho $11-2n$
    Vậy

    $11 – 2n \in Ư(35)$
    Lại có $n$ là số tự nhiên nên $11 – 2n < 9$

    Do đó

    $11 – 2n \in \{1, 5, 7\}$

    Vậy 

    $n \in \{5, 3,2\}$

    Bình luận

Viết một bình luận