Bài giải phương trình a,5x-10=0 b,(x-2)(4x+5)=0 c,4x+5/3 + 2x-1/2=3x-4/6 d,x/x-1 – 5/x+1=x mũ 2 +1/x mũ 2 -1

Bài giải phương trình
a,5x-10=0
b,(x-2)(4x+5)=0
c,4x+5/3 + 2x-1/2=3x-4/6
d,x/x-1 – 5/x+1=x mũ 2 +1/x mũ 2 -1

0 bình luận về “Bài giải phương trình a,5x-10=0 b,(x-2)(4x+5)=0 c,4x+5/3 + 2x-1/2=3x-4/6 d,x/x-1 – 5/x+1=x mũ 2 +1/x mũ 2 -1”

  1. Đáp án:

     

    Giải thích các bước giải:

    a) 5x-10=0

    ⇔ x=$\frac{10}{5}$

    ⇔ x=2

    vậy pt có tập nghiệm là S={2 }

    b) (x-2)(4x+5)=0

    ⇔$\left \{ {{x-2=0} \atop {4x+5=0}} \right.$ 

    ⇔$\left \{ {{x=2} \atop {x=$\frac{-5}{4}$ }} \right.$ 

    vậy pt có tập nghiệm là S={2,$\frac{-5}{4}$}

    c)$\frac{4x+5}{3}$ +$\frac{2x-1}{2}$ =$\frac{3x-4}{6}$ 

    ⇒(4x-5)2+(2x-1)3=3x-4

    ⇔8x+10+6x-3=3x-4

    ⇔2x+7=3x-4

    ⇔4+7=3x-2x

    ⇔10=x

    vậy pt có tập nghiệm là S={10}

    d)$\frac{x}{x-1}$-$\frac{5}{x+1}$=$\frac{x²+1}{x²-1}$

    ĐKXĐ của pt ; \(\left[ \begin{array}{l}x-1∦0\\x+1∦0\end{array} \right.\) ⇔$\left \{ {{x∦1} \atop {x∦-1}} \right.$ 

    ⇒x(x+1)-5(x-1)=x²+1

    ⇔x(x+1)-5(x-1)-(x²+1)=0

    ⇔(x+1)[(x-5(x-1)-x]=0

    ⇔(x+1)(x-5x-5-x)=0

    ⇔(x+1)(-10x)=0

    ⇔$\left \{ {{x+1=0} \atop {-10x=0}} \right.$ 

    ⇔$\left \{ {{x=-1(KT/M)} \atop {x=2(T/M)}} \right.$ 

    vậy pt có tập nghiệm là S={2}

     

    Bình luận
  2.         `_REACHY_`

    a, `5x-10=0`

    `⇔5(x-2)=0`

    `⇔x-2=0`

    `⇔x=2`

    Vậy `S={2}`

    b, `(x-2)(4x+5)=0`

    `⇔x-2=0`

           `4x+5=0`

    `⇔x=2`

            `x=-5/4`

    Vậy `S={2;-5/4}`

    c, `(4x+5)/3 + (2x-1)/2=(3x-4)/6`

    `⇔2.(4x+5)+3.(2x-1)=3x-4`

    `⇔8x+10+6x-3=3x-4`

    `⇔14x+7=3x-4`

    `⇔14x-3x=-4-7`

    `⇔11x=-11`

    `⇔x=-1`

    Vậy `S={-1}`

    d, ĐKXĐ : `x≠1;x≠-1`

    `x/(x-1) -5/(x+1)=(x^(2)+1)/(x^(2)-1)`

    `⇔[x.(x+1)]/[(x+1).(x-1)]- [5.(x-1)]/[(x+1).(x-1)]=(x^(2)+1)/[(x+1)(x-1)]`

    `⇔x.(x+1)-5.(x-1)=x^2+1`

    `⇔x^2+1-5x+5-x^2-1=0`

    `⇔(x^2-x^2)5x+(1-1+5)=0`

    `⇔-5x+5=0`

    `⇔-5(x-1)=0`

    `⇔x-1=0`

    `⇔x=1`

    Vậy `S={1}` (Không t/m điều kiện xác định)

    `#Study well`

    Bình luận

Viết một bình luận