Bài toán 3 : Tìm x biết. a) 4x(x + 1) = 8(x + 1) g) 5x(x – 2000) – x + 2000 = 0 b) x(x – 1) – 2(1 – x) = 0 h) x – 4x = 0 c) 2x(x – 2) – (2 – x) = 0 k)

Bài toán 3 : Tìm x biết.
a) 4x(x + 1) = 8(x + 1) g) 5x(x – 2000) – x + 2000 = 0
b) x(x – 1) – 2(1 – x) = 0 h) x – 4x = 0
c) 2x(x – 2) – (2 – x) = 0 k) (1 – x) – 1 + x = 0
d) (x – 3) + 3 – x = 0 m) x + 6x = 0

0 bình luận về “Bài toán 3 : Tìm x biết. a) 4x(x + 1) = 8(x + 1) g) 5x(x – 2000) – x + 2000 = 0 b) x(x – 1) – 2(1 – x) = 0 h) x – 4x = 0 c) 2x(x – 2) – (2 – x) = 0 k)”

  1. `a, 4x(x+1)=8(x+1)`

    `⇔4x(x+1)-8(x+1)=0`

    `⇔(x+1)(4x-8)=0`

    `⇔` \(\left[ \begin{array}{l}x+1=0\\4x-8=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=-1\\x=2\end{array} \right.\) 

    `b, x(x-1)-2(1-x)=0`

    `⇔ x(x-1)+2(x-1)=0`

    `⇔ (x+2)(x-1)=0`

    `⇔` \(\left[ \begin{array}{l}x+2=0\\x-1=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=-2\\x=1\end{array} \right.\) 

    `c, 2x(x-2)-(2-x)=0`

    `⇔ 2x(x-2)+(x-2)=0`

    `⇔ (2x+1)(x-2)=0`

    `⇔` \(\left[ \begin{array}{l}2x+1=0\\x-2=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=\dfrac{-1}{2}\\x=2\end{array} \right.\) 

    `d, (x-3) +3-x=0`

    `⇔x-3 + 3-x=0`

    `⇔0=0`

    `⇒x∈R`

    `g, 5x(x-2000) – x+2000=0`

    `⇔5x(x-2000)-(x-2000)=0`

    `⇔(5x-1)(x-2000)=0`

    `⇔` \(\left[ \begin{array}{l}5x-1=0\\x-2000=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=\dfrac{1}{5}\\x=2000\end{array} \right.\) 

    `h, x – 4x = 0`

    `⇔ -3x = 0`

    `⇔ x = 0`

    `k, (1-x) – 1+x=0`

    `⇔1-x-1+x=0`

    `⇔0=0`

    `⇔x∈R`

    `m, x +6x = 0`

    `⇔ 7x =0`

    `⇔x=0`

    Bình luận
  2. a)    4x(x + 1) = 8(x + 1)

    =>4x(x + 1) – 8(x +1)= 0

    => (x+1)(4x-8)          =0

    => x+1 = 0 hoặc 4x-8 = 0

    => x= -1     hoặc x= 2

    Vậy x ∈ { -1 ; 2}

    b)  x(x – 1) – 2(1 – x) = 0

    => x(x-1) + 2(x-1) = 0

    => (x-1)(x+2) =0 

    => x-1 = 0 hoặc x+2 =0

    => x= 1 hoặc x= -2

    Vậy x ∈ { 1 ; -2}

    c)  2x(x – 2) – (2 – x) = 0

    => 2x(x-2) + ( x-2) = 0

    => (x-2)(2x+1) = 0

    => x-2 = 0 hoặc 2x+1 = 0

    => x = 2  hoặc x= -1/2

    Vậy x { 2 ; -1/2}

    d)   (x – 3) + 3 – x = 0

    => (x-3) – ( x-3) = 0

    => (x-3)(1-1) = 0

    => ( x-3).0 =0

    => x€R

    Vậy x€R

    g)  5x(x – 2000) – x + 2000 = 0

    => 5x( x-2000) -(x-2000) =0

    => (x-2000)(5x-1) =0 

    => x-2000 = 0 hoặc 5x-1 = 0

    => x= 2000 hoặc x= 1/5

    Vậy x∈ { 2000; 1/5}

    h) x – 4x = 0

    => -3x=0

    =>  x= 0

    Vậy x=0

    k)  (1 – x) – 1 + x = 0

    => (1-x) -(1-x) =0

    =>(1-x)(1-1) = 0

    => (1-x).0 = 0

    => x € R

    Vậy x € R

    m) x + 6x = 0

    => 7x =0

    => x=0

    Vậy x=0

    Bình luận

Viết một bình luận