Biến đổi thành tích A=1-2cosx+cos2x B=1+cosx + cos2x C= $sin^{2}x$ – $sin^{2}2x$ + $sin^{2}3x$ 31/08/2021 Bởi Gabriella Biến đổi thành tích A=1-2cosx+cos2x B=1+cosx + cos2x C= $sin^{2}x$ – $sin^{2}2x$ + $sin^{2}3x$
$\begin{gathered} A = 1 – 2\cos x + \cos 2x = \left( {1 + \cos 2x} \right) – 2\cos x = 2{\cos ^2}x – 2\cos x = 2\cos x\left( {\cos x – 1} \right) \hfill \\ B = 1 + \cos x + \cos 2x = 1 + \cos x + 2{\cos ^2}x – 1 = \cos x\left( {2\cos + 1} \right) \hfill \\ C = {\sin ^2}x – {\sin ^2}2x + {\sin ^2}3x = \dfrac{{1 – \cos 2x}}{2} – \dfrac{{1 – \cos 4x}}{2} + \dfrac{{1 – \cos 6x}}{2} = \dfrac{{1 – \cos 2x + \cos 4x – \cos 6x}}{2} = \dfrac{{2{{\sin }^2}x – 2\sin 5x.\sin ( – x)}}{2} \hfill \\ = \dfrac{{2{{\sin }^2}x + 2\sin 5x\sin x}}{2} \hfill \\ = {\sin ^2}x + \sin 5x.\sin x = \sin x\left( {\sin x + \sin 5x} \right) = 2.\sin x\sin 3x.\cos 2x \hfill \\ \end{gathered}$ Bình luận
$\begin{gathered}
A = 1 – 2\cos x + \cos 2x = \left( {1 + \cos 2x} \right) – 2\cos x = 2{\cos ^2}x – 2\cos x = 2\cos x\left( {\cos x – 1} \right) \hfill \\
B = 1 + \cos x + \cos 2x = 1 + \cos x + 2{\cos ^2}x – 1 = \cos x\left( {2\cos + 1} \right) \hfill \\
C = {\sin ^2}x – {\sin ^2}2x + {\sin ^2}3x = \dfrac{{1 – \cos 2x}}{2} – \dfrac{{1 – \cos 4x}}{2} + \dfrac{{1 – \cos 6x}}{2} = \dfrac{{1 – \cos 2x + \cos 4x – \cos 6x}}{2} = \dfrac{{2{{\sin }^2}x – 2\sin 5x.\sin ( – x)}}{2} \hfill \\
= \dfrac{{2{{\sin }^2}x + 2\sin 5x\sin x}}{2} \hfill \\
= {\sin ^2}x + \sin 5x.\sin x = \sin x\left( {\sin x + \sin 5x} \right) = 2.\sin x\sin 3x.\cos 2x \hfill \\
\end{gathered}$