bt: tìm x,y biết: a, 2/7-(1/2-x)=3/7+(1/2x-1/3) b, (x-1/7)^2020+|y+1/6|=0 c, (1/7x-1/8)^2020+(3/5y-1/2)^2020 ≤ 0

bt: tìm x,y biết:
a, 2/7-(1/2-x)=3/7+(1/2x-1/3)
b, (x-1/7)^2020+|y+1/6|=0
c, (1/7x-1/8)^2020+(3/5y-1/2)^2020 ≤ 0

0 bình luận về “bt: tìm x,y biết: a, 2/7-(1/2-x)=3/7+(1/2x-1/3) b, (x-1/7)^2020+|y+1/6|=0 c, (1/7x-1/8)^2020+(3/5y-1/2)^2020 ≤ 0”

  1. Đáp án:

    $\begin{array}{l}
    a)\dfrac{2}{7} – \left( {\dfrac{1}{2} – x} \right) = \dfrac{3}{7} + \left( {\dfrac{1}{2}x – \dfrac{1}{3}} \right)\\
     \Rightarrow \dfrac{2}{7} – \dfrac{1}{2} + x = \dfrac{3}{7} + \dfrac{1}{2}x – \dfrac{1}{3}\\
     \Rightarrow x – \dfrac{1}{2}x = \dfrac{3}{7} – \dfrac{1}{3} – \dfrac{2}{7} + \dfrac{1}{2}\\
     \Rightarrow \dfrac{1}{2}x = \dfrac{1}{7} + \dfrac{1}{6}\\
     \Rightarrow \dfrac{1}{2}x = \dfrac{{13}}{{42}}\\
     \Rightarrow x = \dfrac{{13}}{{21}}\\
    Vay\,x = \dfrac{{13}}{{21}}\\
    b){\left( {x – \dfrac{1}{7}} \right)^{2020}} + \left| {y + \dfrac{1}{6}} \right| = 0\\
    Do:\left\{ \begin{array}{l}
    {\left( {x – \dfrac{1}{7}} \right)^{2020}} \ge 0\\
    \left| {y + \dfrac{1}{6}} \right| \ge 0
    \end{array} \right.\\
     \Rightarrow {\left( {x – \dfrac{1}{7}} \right)^{2020}} = \left| {y + \dfrac{1}{6}} \right| = 0\\
     \Rightarrow \left\{ \begin{array}{l}
    x = \dfrac{1}{7}\\
    y =  – \dfrac{1}{6}
    \end{array} \right.\\
    c){\left( {\dfrac{1}{7}x – \dfrac{1}{8}} \right)^{2020}} + {\left( {\dfrac{3}{5}y – \dfrac{1}{2}} \right)^{2020}} \le 0\\
     \Rightarrow \left\{ \begin{array}{l}
    {\left( {\dfrac{1}{7}x – \dfrac{1}{8}} \right)^{2020}} = 0\\
    {\left( {\dfrac{3}{5}y – \dfrac{1}{2}} \right)^{2020}} = 0
    \end{array} \right.\\
     \Rightarrow \left\{ \begin{array}{l}
    \dfrac{1}{7}x = \dfrac{1}{8}\\
    \dfrac{3}{5}y = \dfrac{1}{2}
    \end{array} \right.\\
     \Rightarrow \left\{ \begin{array}{l}
    x = \dfrac{7}{8}\\
    y = \dfrac{5}{6}
    \end{array} \right.\\
    Vay\,x = \dfrac{7}{8};y = \dfrac{5}{6}
    \end{array}$

    Bình luận

Viết một bình luận