C=x^2/(x^2+x+1) với x khác -1 Tìm x để C có giá trị nguyên 16/11/2021 Bởi Ariana C=x^2/(x^2+x+1) với x khác -1 Tìm x để C có giá trị nguyên
Giải thích các bước giải: Ta có: $C = \dfrac{{{x^2}}}{{{x^2} + x + 1}}$ Mà: $\begin{array}{l}\left\{ \begin{array}{l}{x^2} \ge 0,\forall x \ne – 1\\{x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0,\forall x \ne – 1\end{array} \right.\\ \Rightarrow \dfrac{{{x^2}}}{{{x^2} + x + 1}} \ge 0,\forall x \ne – 1\\ \Rightarrow C \ge 0\left( 1 \right)\end{array}$ Lại có: $\begin{array}{l}C – \dfrac{4}{3} = \dfrac{{{x^2}}}{{{x^2} + x + 1}} – \dfrac{4}{3}\\ = \dfrac{{ – {x^2} – 4x – 4}}{{{x^2} + x + 1}}\\ = \dfrac{{ – {{\left( {x + 2} \right)}^2}}}{{{x^2} + x + 1}}\end{array}$ Mặt khác: $\begin{array}{l}\left\{ \begin{array}{l} – {\left( {x + 2} \right)^2} \le 0,\forall x \ne – 1\\{x^2} + x + 1 > 0,\forall x \ne – 1\end{array} \right.\\ \Rightarrow \dfrac{{ – {{\left( {x + 2} \right)}^2}}}{{{x^2} + x + 1}} \le 0,\forall x \ne – 1\\ \Rightarrow C – \dfrac{4}{3} \le 0\\ \Rightarrow C \le \dfrac{4}{3}\left( 2 \right)\end{array}$ Từ $\left( 1 \right),\left( 2 \right) \Rightarrow 0 \le C \le \dfrac{4}{3}$ Mà $C \in Z \Leftrightarrow \left[ \begin{array}{l}C = 0\\C = 1\end{array} \right.$ $\begin{array}{l} + )TH1:C = 0\\ \Leftrightarrow {x^2} = 0\\ \Leftrightarrow x = 0\left( {tm} \right)\\ + )TH2:C = 1\\ \Leftrightarrow \dfrac{{{x^2}}}{{{x^2} + x + 1}} = 1\\ \Leftrightarrow {x^2} + x + 1 = {x^2}\\ \Leftrightarrow x + 1 = 0\\ \Leftrightarrow x = – 1\left( l \right)\end{array}$ Vậy $x=0$ thỏa mãn đề. Bình luận
`C={x^2}/{x^2+x+1}={x^2+x+1-(x+1)}/{x^2+x+1}` `C=1-{x+1}/{x^2+x+1}` `C\in Z=>{x+1}/{x^2+x+1} \in Z` `x\in Z=>{x(x+1)}/{x^2+x+1} \in Z` `=>{x^2+x+1-1}/{x^2+x+1} \in Z` `=>1- 1/{x^2+x+1} \in Z` `=>1/{x^2+x+1} \inZ` `=>x^2+x+1\in Ư(1)={-1;1}` `=>x^2+x\in {-2;0}` $⇒\left[\begin{array}{l}x^2+x=-2\\x^2+x=0\end{array}\right.$ $⇔\left[\begin{array}{l}x^2+x+2=0 (vô \ nghiệm)\\x(x+1)=0\end{array}\right.$ $⇔\left[\begin{array}{l}x=0\\x+1=0\end{array}\right.$ $⇔\left[\begin{array}{l}x=0\ (nhận) \\x=-1 (loại) \end{array}\right.$ Vậy $x=0$ thì $C$ có giá trị nguyên. Bình luận
Giải thích các bước giải:
Ta có:
$C = \dfrac{{{x^2}}}{{{x^2} + x + 1}}$
Mà:
$\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} \ge 0,\forall x \ne – 1\\
{x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0,\forall x \ne – 1
\end{array} \right.\\
\Rightarrow \dfrac{{{x^2}}}{{{x^2} + x + 1}} \ge 0,\forall x \ne – 1\\
\Rightarrow C \ge 0\left( 1 \right)
\end{array}$
Lại có:
$\begin{array}{l}
C – \dfrac{4}{3} = \dfrac{{{x^2}}}{{{x^2} + x + 1}} – \dfrac{4}{3}\\
= \dfrac{{ – {x^2} – 4x – 4}}{{{x^2} + x + 1}}\\
= \dfrac{{ – {{\left( {x + 2} \right)}^2}}}{{{x^2} + x + 1}}
\end{array}$
Mặt khác:
$\begin{array}{l}
\left\{ \begin{array}{l}
– {\left( {x + 2} \right)^2} \le 0,\forall x \ne – 1\\
{x^2} + x + 1 > 0,\forall x \ne – 1
\end{array} \right.\\
\Rightarrow \dfrac{{ – {{\left( {x + 2} \right)}^2}}}{{{x^2} + x + 1}} \le 0,\forall x \ne – 1\\
\Rightarrow C – \dfrac{4}{3} \le 0\\
\Rightarrow C \le \dfrac{4}{3}\left( 2 \right)
\end{array}$
Từ $\left( 1 \right),\left( 2 \right) \Rightarrow 0 \le C \le \dfrac{4}{3}$
Mà $C \in Z \Leftrightarrow \left[ \begin{array}{l}
C = 0\\
C = 1
\end{array} \right.$
$\begin{array}{l}
+ )TH1:C = 0\\
\Leftrightarrow {x^2} = 0\\
\Leftrightarrow x = 0\left( {tm} \right)\\
+ )TH2:C = 1\\
\Leftrightarrow \dfrac{{{x^2}}}{{{x^2} + x + 1}} = 1\\
\Leftrightarrow {x^2} + x + 1 = {x^2}\\
\Leftrightarrow x + 1 = 0\\
\Leftrightarrow x = – 1\left( l \right)
\end{array}$
Vậy $x=0$ thỏa mãn đề.
`C={x^2}/{x^2+x+1}={x^2+x+1-(x+1)}/{x^2+x+1}`
`C=1-{x+1}/{x^2+x+1}`
`C\in Z=>{x+1}/{x^2+x+1} \in Z`
`x\in Z=>{x(x+1)}/{x^2+x+1} \in Z`
`=>{x^2+x+1-1}/{x^2+x+1} \in Z`
`=>1- 1/{x^2+x+1} \in Z`
`=>1/{x^2+x+1} \inZ`
`=>x^2+x+1\in Ư(1)={-1;1}`
`=>x^2+x\in {-2;0}`
$⇒\left[\begin{array}{l}x^2+x=-2\\x^2+x=0\end{array}\right.$
$⇔\left[\begin{array}{l}x^2+x+2=0 (vô \ nghiệm)\\x(x+1)=0\end{array}\right.$
$⇔\left[\begin{array}{l}x=0\\x+1=0\end{array}\right.$
$⇔\left[\begin{array}{l}x=0\ (nhận) \\x=-1 (loại) \end{array}\right.$
Vậy $x=0$ thì $C$ có giá trị nguyên.