C=[2a^(-2/3) – 1/2 a^(3/2)]^3 Mấy chế rút gọn bt này giúp với 01/10/2021 Bởi Katherine C=[2a^(-2/3) – 1/2 a^(3/2)]^3 Mấy chế rút gọn bt này giúp với
\[\begin{array}{l} C = {\left( {2{a^{ – \frac{2}{3}}} – \frac{1}{2}{a^{\frac{3}{2}}}} \right)^3} = {\left( {\frac{2}{{{a^{\frac{2}{3}}}}} – \frac{1}{2}{a^{\frac{3}{2}}}} \right)^3} = {\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}} – \frac{{\sqrt {{a^3}} }}{2}} \right)^3}\\ = {\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}}} \right)^3} – 3.{\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}}} \right)^2}.\frac{{\sqrt {{a^3}} }}{2} + 3.\frac{2}{{\sqrt[3]{{{a^2}}}}}.{\left( {\frac{{\sqrt {{a^3}} }}{2}} \right)^2} – {\left( {\frac{{\sqrt {{a^3}} }}{2}} \right)^3}\\ = \frac{8}{{{a^2}}} – .\frac{{12}}{{\sqrt[3]{{{a^4}}}}}.\frac{{\sqrt {{a^3}} }}{2} + \frac{6}{{\sqrt[3]{{{a^2}}}}}.\frac{{{a^3}}}{4} – \frac{{{{\left( {\sqrt {{a^3}} } \right)}^3}}}{8}\\ = \frac{8}{{{a^2}}} – 6.{a^{\frac{3}{2} – \frac{4}{3}}} + \frac{3}{2}.{a^{\frac{3}{2} – \frac{2}{3}}} – \frac{{{a^3}}}{8}\\ = \frac{8}{{{a^2}}} – \frac{{{a^3}}}{8} – 6{a^{\frac{1}{6}}} + \frac{3}{2}{a^{\frac{7}{3}}}. \end{array}\] Bình luận
\[\begin{array}{l}
C = {\left( {2{a^{ – \frac{2}{3}}} – \frac{1}{2}{a^{\frac{3}{2}}}} \right)^3} = {\left( {\frac{2}{{{a^{\frac{2}{3}}}}} – \frac{1}{2}{a^{\frac{3}{2}}}} \right)^3} = {\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}} – \frac{{\sqrt {{a^3}} }}{2}} \right)^3}\\
= {\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}}} \right)^3} – 3.{\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}}} \right)^2}.\frac{{\sqrt {{a^3}} }}{2} + 3.\frac{2}{{\sqrt[3]{{{a^2}}}}}.{\left( {\frac{{\sqrt {{a^3}} }}{2}} \right)^2} – {\left( {\frac{{\sqrt {{a^3}} }}{2}} \right)^3}\\
= \frac{8}{{{a^2}}} – .\frac{{12}}{{\sqrt[3]{{{a^4}}}}}.\frac{{\sqrt {{a^3}} }}{2} + \frac{6}{{\sqrt[3]{{{a^2}}}}}.\frac{{{a^3}}}{4} – \frac{{{{\left( {\sqrt {{a^3}} } \right)}^3}}}{8}\\
= \frac{8}{{{a^2}}} – 6.{a^{\frac{3}{2} – \frac{4}{3}}} + \frac{3}{2}.{a^{\frac{3}{2} – \frac{2}{3}}} – \frac{{{a^3}}}{8}\\
= \frac{8}{{{a^2}}} – \frac{{{a^3}}}{8} – 6{a^{\frac{1}{6}}} + \frac{3}{2}{a^{\frac{7}{3}}}.
\end{array}\]