C= $\frac{x-2}{\sqrt[]{x}-3}$ Tìm x thuộc Z để C thuộc Z D = $\frac{5}{3\sqrt[]{x}+2}$ Tìm x thuộc R để D thuộc Z 22/08/2021 Bởi Maria C= $\frac{x-2}{\sqrt[]{x}-3}$ Tìm x thuộc Z để C thuộc Z D = $\frac{5}{3\sqrt[]{x}+2}$ Tìm x thuộc R để D thuộc Z
Đáp án: $\begin{array}{l}Dkxd:\left\{ \begin{array}{l}x \ge 0\\\sqrt x – 3 \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ge 0\\x \ne 9\end{array} \right.\\C = \dfrac{{x – 2}}{{\sqrt x – 3}} = \dfrac{{x – 9 + 7}}{{\sqrt x – 3}}\\ = \dfrac{{x – 9}}{{\sqrt x – 3}} + \dfrac{7}{{\sqrt x – 3}}\\ = \sqrt x + 3 + \dfrac{7}{{\sqrt x – 3}}\\C \in Z\\ \Rightarrow \left\{ \begin{array}{l}\sqrt x \in Z\\\dfrac{7}{{\sqrt x – 3}} \in Z\end{array} \right.\\ \Rightarrow \left( {\sqrt x – 3} \right) \in \{ – 1;1;7\} \\\left( {do:\sqrt x – 3 \ge – 3} \right)\\ \Rightarrow \sqrt x \in \{ 2;4;10\} \\ \Rightarrow x \in \{ 4;16;100\} \left( {tmdk} \right)\\b)D = \dfrac{5}{{3\sqrt x + 2}} \in Z\\ \Rightarrow 3\sqrt x + 2 = 5\\\left( {do:3\sqrt x + 2 \ge 2} \right)\\ \Rightarrow \sqrt x = 1\\ \Rightarrow x = 1\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
Dkxd:\left\{ \begin{array}{l}
x \ge 0\\
\sqrt x – 3 \ne 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x \ge 0\\
x \ne 9
\end{array} \right.\\
C = \dfrac{{x – 2}}{{\sqrt x – 3}} = \dfrac{{x – 9 + 7}}{{\sqrt x – 3}}\\
= \dfrac{{x – 9}}{{\sqrt x – 3}} + \dfrac{7}{{\sqrt x – 3}}\\
= \sqrt x + 3 + \dfrac{7}{{\sqrt x – 3}}\\
C \in Z\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt x \in Z\\
\dfrac{7}{{\sqrt x – 3}} \in Z
\end{array} \right.\\
\Rightarrow \left( {\sqrt x – 3} \right) \in \{ – 1;1;7\} \\
\left( {do:\sqrt x – 3 \ge – 3} \right)\\
\Rightarrow \sqrt x \in \{ 2;4;10\} \\
\Rightarrow x \in \{ 4;16;100\} \left( {tmdk} \right)\\
b)D = \dfrac{5}{{3\sqrt x + 2}} \in Z\\
\Rightarrow 3\sqrt x + 2 = 5\\
\left( {do:3\sqrt x + 2 \ge 2} \right)\\
\Rightarrow \sqrt x = 1\\
\Rightarrow x = 1
\end{array}$