c1 (3/11+3/29-3/170+3/2015):(7/11+7/29-7/170+7/2015) c2 (1-1/2)x (1-1/3)-(1-1/4)….(1-1/2003)

c1 (3/11+3/29-3/170+3/2015):(7/11+7/29-7/170+7/2015)
c2 (1-1/2)x (1-1/3)-(1-1/4)….(1-1/2003)

0 bình luận về “c1 (3/11+3/29-3/170+3/2015):(7/11+7/29-7/170+7/2015) c2 (1-1/2)x (1-1/3)-(1-1/4)….(1-1/2003)”

  1. c1 Ta có : 

    311+329−3170+32015711+729−7170+72015

    = 3.(111+129−1170+12015)7.(111+129−1170+12015) 

    = 37 

    c, (1-12 )x (1-13 )-(1-14 )….(1-12003 )

    12 x 23  x 34  x …. x 20022003 

    1x2x3x….x20022x3x4x…x2003 

     

    Bình luận
  2. Đáp án:

    c1 Ta có : 

    $\frac{\frac{3}{11}+\frac{3}{29}-\frac{3}{170}+\frac{3}{2015}}{\frac{7}{11}+\frac{7}{29}-\frac{7}{170}+\frac{7}{2015}}$

    = $\frac{3.(\frac{1}{11}+\frac{1}{29}-\frac{1}{170}+\frac{1}{2015})}{7.(\frac{1}{11}+\frac{1}{29}-\frac{1}{170}+\frac{1}{2015})}$ 

    = $\frac{3}{7}$ 

    c, (1-$\frac{1}{2}$ )x (1-$\frac{1}{3}$ )-(1-$\frac{1}{4}$ )….(1-$\frac{1}{2003}$ )

    = $\frac{1}{2}$ x $\frac{2}{3}$  x $\frac{3}{4}$  x …. x $\frac{2002}{2003}$ 

    = $\frac{1x2x3x….x2002}{2x3x4x…x2003}$ 

    = $\frac{1}{2003}$ 

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận