Cấp số nhân : { u1+u2+u3 = 21 and 1/u1 + 1/u2 +1/u3 = 7/12 . tìm u1 và q 28/07/2021 Bởi Alice Cấp số nhân : { u1+u2+u3 = 21 and 1/u1 + 1/u2 +1/u3 = 7/12 . tìm u1 và q
Đáp án: $\begin{array}{l}{u_1} = \frac{{{u_2}}}{q};{u_3} = {u_2}.q\\\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 21\\\frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} = \frac{7}{{12}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\frac{{{u_2}}}{q} + {u_2} + {u_2}q = 21\\\frac{q}{{{u_2}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_2}q}} = \frac{7}{{12}}\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{u_2}\left( {\frac{1}{q} + 1 + q} \right) = 21\\\frac{1}{{{u_2}}}\left( {q + 1 + \frac{1}{q}} \right) = \frac{7}{{12}}\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}u_2^2 = 21:\frac{7}{{12}}\\{u_2}\left( {\frac{1}{q} + 1 + q} \right) = 21\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{u_2} = \pm 6\\q + \frac{1}{q} + 1 = \pm \frac{7}{2}\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{u_2} = \pm 6\\\left[ \begin{array}{l}q = 2\\q = \frac{1}{2}\\q = \frac{{ – 9 \pm \sqrt {65} }}{4}\end{array} \right.\end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
{u_1} = \frac{{{u_2}}}{q};{u_3} = {u_2}.q\\
\left\{ \begin{array}{l}
{u_1} + {u_2} + {u_3} = 21\\
\frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} = \frac{7}{{12}}
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
\frac{{{u_2}}}{q} + {u_2} + {u_2}q = 21\\
\frac{q}{{{u_2}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_2}q}} = \frac{7}{{12}}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{u_2}\left( {\frac{1}{q} + 1 + q} \right) = 21\\
\frac{1}{{{u_2}}}\left( {q + 1 + \frac{1}{q}} \right) = \frac{7}{{12}}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
u_2^2 = 21:\frac{7}{{12}}\\
{u_2}\left( {\frac{1}{q} + 1 + q} \right) = 21
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{u_2} = \pm 6\\
q + \frac{1}{q} + 1 = \pm \frac{7}{2}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{u_2} = \pm 6\\
\left[ \begin{array}{l}
q = 2\\
q = \frac{1}{2}\\
q = \frac{{ – 9 \pm \sqrt {65} }}{4}
\end{array} \right.
\end{array} \right.
\end{array}$