câu 1 1)(x-3)/(x+5)=5/7 2)7/x-1=x+1/9 3)x+4/20=5/x+4 4)x-1/x+2=x-2/x+3 07/07/2021 Bởi Camila câu 1 1)(x-3)/(x+5)=5/7 2)7/x-1=x+1/9 3)x+4/20=5/x+4 4)x-1/x+2=x-2/x+3
Đáp án: d. \(x = – \dfrac{1}{2}\) Giải thích các bước giải: \(\begin{array}{l}1)DK:x \ne – 5\\\dfrac{{x – 3}}{{x + 5}} = \dfrac{5}{7}\\ \to 7x – 21 = 5x + 25\\ \to 2x = 46\\ \to x = 23\\2)DK:x \ne 1\\\dfrac{7}{{x – 1}} = \dfrac{{x + 1}}{9}\\ \to \left( {x – 1} \right)\left( {x + 1} \right) = 63\\ \to {x^2} – 1 = 63\\ \to {x^2} = 64\\ \to \left| x \right| = 8\\ \to \left[ \begin{array}{l}x = 8\\x = – 8\end{array} \right.\\3)DK:x \ne – 4\\\dfrac{{x + 4}}{{20}} = \dfrac{5}{{x + 4}}\\ \to {\left( {x + 4} \right)^2} = 100\\ \to \left| {x + 4} \right| = 10\\ \to \left[ \begin{array}{l}x + 4 = 10\\x + 4 = – 10\end{array} \right.\\ \to \left[ \begin{array}{l}x = 6\\x = – 14\end{array} \right.\\4)DK:x \ne \left\{ { – 3; – 2} \right\}\\\dfrac{{x – 1}}{{x + 2}} = \dfrac{{x – 2}}{{x + 3}}\\ \to \left( {x – 1} \right)\left( {x + 3} \right) = \left( {x + 2} \right)\left( {x – 2} \right)\\ \to {x^2} + 2x – 3 = {x^2} – 4\\ \to 2x = – 1\\ \to x = – \dfrac{1}{2}\end{array}\) Bình luận
Đáp án:
d. \(x = – \dfrac{1}{2}\)
Giải thích các bước giải:
\(\begin{array}{l}
1)DK:x \ne – 5\\
\dfrac{{x – 3}}{{x + 5}} = \dfrac{5}{7}\\
\to 7x – 21 = 5x + 25\\
\to 2x = 46\\
\to x = 23\\
2)DK:x \ne 1\\
\dfrac{7}{{x – 1}} = \dfrac{{x + 1}}{9}\\
\to \left( {x – 1} \right)\left( {x + 1} \right) = 63\\
\to {x^2} – 1 = 63\\
\to {x^2} = 64\\
\to \left| x \right| = 8\\
\to \left[ \begin{array}{l}
x = 8\\
x = – 8
\end{array} \right.\\
3)DK:x \ne – 4\\
\dfrac{{x + 4}}{{20}} = \dfrac{5}{{x + 4}}\\
\to {\left( {x + 4} \right)^2} = 100\\
\to \left| {x + 4} \right| = 10\\
\to \left[ \begin{array}{l}
x + 4 = 10\\
x + 4 = – 10
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 6\\
x = – 14
\end{array} \right.\\
4)DK:x \ne \left\{ { – 3; – 2} \right\}\\
\dfrac{{x – 1}}{{x + 2}} = \dfrac{{x – 2}}{{x + 3}}\\
\to \left( {x – 1} \right)\left( {x + 3} \right) = \left( {x + 2} \right)\left( {x – 2} \right)\\
\to {x^2} + 2x – 3 = {x^2} – 4\\
\to 2x = – 1\\
\to x = – \dfrac{1}{2}
\end{array}\)