Câu 1:cho bt:P=(x+2/xcanx-1 +canx/x+canx+1 +1/1-canx):(canx-1)/2 Rút gọn rồi cmr:P>0 với mọi x >hoặc=0 và x khác 1 09/08/2021 Bởi Everleigh Câu 1:cho bt:P=(x+2/xcanx-1 +canx/x+canx+1 +1/1-canx):(canx-1)/2 Rút gọn rồi cmr:P>0 với mọi x >hoặc=0 và x khác 1
Giải thích các bước giải: \(\begin{array}{l}P = \left( {\dfrac{{x + 2}}{{x\sqrt x – 1}} + \dfrac{{\sqrt x }}{{x + \sqrt x + 1}} + \dfrac{1}{{1 – \sqrt x }}} \right):\dfrac{{\sqrt x – 1}}{2}\\ = \dfrac{{x + 2 + \sqrt x \left( {\sqrt x – 1} \right) – \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\ = \dfrac{{x + 2 + x – \sqrt x – x – \sqrt x – 1}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\ = \dfrac{{x – 2\sqrt x + 1}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\ = \dfrac{{{{\left( {\sqrt x – 1} \right)}^2}}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\ = \dfrac{2}{{x + \sqrt x + 1}}\\Do\,x + \sqrt x + 1 = {\left( {\sqrt x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\\ \Rightarrow P = \dfrac{2}{{x + \sqrt x + 1}} > 0\,\,voi\,x \ge 0;x \ne 1\end{array}\) Bình luận
Giải thích các bước giải:
\(\begin{array}{l}
P = \left( {\dfrac{{x + 2}}{{x\sqrt x – 1}} + \dfrac{{\sqrt x }}{{x + \sqrt x + 1}} + \dfrac{1}{{1 – \sqrt x }}} \right):\dfrac{{\sqrt x – 1}}{2}\\
= \dfrac{{x + 2 + \sqrt x \left( {\sqrt x – 1} \right) – \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\
= \dfrac{{x + 2 + x – \sqrt x – x – \sqrt x – 1}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\
= \dfrac{{x – 2\sqrt x + 1}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\
= \dfrac{{{{\left( {\sqrt x – 1} \right)}^2}}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{2}{{\sqrt x – 1}}\\
= \dfrac{2}{{x + \sqrt x + 1}}\\
Do\,x + \sqrt x + 1 = {\left( {\sqrt x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\\
\Rightarrow P = \dfrac{2}{{x + \sqrt x + 1}} > 0\,\,voi\,x \ge 0;x \ne 1
\end{array}\)