Câu 1: Giải các phương trình sau: a, 1/3x-3=6x+1 b,(x+5)(2x+3)+x^2-25=0 c,2/x+1+4/x-2=3x/x^2-x-2

Câu 1: Giải các phương trình sau:
a, 1/3x-3=6x+1
b,(x+5)(2x+3)+x^2-25=0
c,2/x+1+4/x-2=3x/x^2-x-2

0 bình luận về “Câu 1: Giải các phương trình sau: a, 1/3x-3=6x+1 b,(x+5)(2x+3)+x^2-25=0 c,2/x+1+4/x-2=3x/x^2-x-2”

  1. Đáp án: + Giải thích các bước giải:

    `a//`

    `1/(3x-3) = 6x + 1`         `ĐKXĐ : x \ne 1`

    `⇔ ( 3x – 3 )( 6x + 1 ) = 1`

    `⇔ 18x^2 – 15x – 3 =1`

    `⇔ 18x^2 – 15x – 4 = 0`

    `⇔ x = (-b±\sqrt{b^2-4ac})/(2a)`

    `⇔ a = 18 ; b = -15 ; c = -4`

    `⇔ x = (-(-15)±\sqrt{(-15)^2 – 4.18.(-4)))/2.18`

    `⇔ x = (5 + sqrt{57})/12 ; (5 – sqrt{57})/12`

    Vậy `S = { (5 ± sqrt{57})/12 }`

    `b//`

    `(x+5)(2x+3)+x^2-25=0`

    `⇔ 2x^2 + 3x + 10x + 15 + x^2 – 25 = 0`

    `⇔ 2x^2 + 13 – 10 + x^2 = 0`

    `⇔ 3x^2 + 13x – 10 = 0`

    `⇔ 3x^2 + 15x – 2x – 10 = 0`

    `⇔ (3x – 2)(x + 5) =0`

    `⇔` \(\left[ \begin{array}{l}3x=2\\x=0-5\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=\frac{2}{3}\\x=-5\end{array} \right.\) 

    Vậy `S = { 2/3 ; -5 }`

    `c//`

    `2/(x+1) + 4/(x-2) = (3x)/(x^2-x-2)`            `ĐKXĐ : x \ne -1 ; 2`

    `⇔ (2(x – 2)(x+1))/((x+1)(x-2)) + (4(x+1)(x-2))/((x-2)(x+1)) = (3(x-2))/((x+1)(x-2)`

    `⇔ 2(x+1) + 4(x-2) = 3(x-2)`

    `⇔ 2x + 2 + 4x – 8 = 3x – 6`

    `⇔ 2x – 6 + 4x = 3x – 6`

    `⇔ 6x – 6 = 3x – 6`

    `⇔ 6x = 3x`

    `⇔ 3x = 0`

    `⇔ x = 0`

    Vậy `S = { 0 }`

    Bình luận
  2. Đáp án + Giải thích các bước giải:

    `a//`

    `(1)/(3x-3)=6x+1` `(ĐKXĐ:x\ne1)`

    `<=>(3x-3)(6x+1)=1`

    `<=>18x^{2}+3x-18x-3-1=0`

    `<=>18x^{2}-15x-4=0`

    `<=>x^{2}-(5)/(6)x-(2)/(9)=0`

    `<=>[x^{2}-2.x.(5)/(12)+((5)/(12))^{2}]-(19)/(48)=0`

    `<=>(x-(5)/(12))^{2}=(19)/(48)`

    `<=>x-(5)/(12)=±(\sqrt{57})/(12)`

    `<=>x=(5±\sqrt{57})/(12)  (TM)`

    Vậy pt có tập nghiệm : `S={(5±\sqrt{57})/(12)}`

    `b//`

    `(x+5)(2x+3)+x^{2}-25=0`

    `<=>(x+5)(2x+3)+(x-5)(x+5)=0`

    `<=>(x+5)(2x+3+x-5)=0`

    `<=>(x+5)(3x-2)=0`

    `<=>` \(\left[ \begin{array}{l}x+5=0\\3x-2=0\end{array} \right.\) 

    `<=>` \(\left[ \begin{array}{l}x=-5\\3x=2\end{array} \right.\) 

    `<=>` \(\left[ \begin{array}{l}x=-5\\x=\dfrac{2}{3}\end{array} \right.\) 

    Vậy pt có tập nghiệm là : `S={-5;(2)/(3)}`

    `c//`

    `(2)/(x+1)+(4)/(x-2)=(3x)/(x^{2}-x-2)` `(ĐKXĐ:x\ne{-1;2})`

    `<=>(2(x-2))/((x+1)(x-2))+(4(x+1))/((x-2)(x+1))=(3x)/((x-2)(x+1))`

    `=>2(x-2)+4(x+1)=3x`

    `<=>2x-4+4x+4-3x=0`

    `<=>3x=0`

    `<=>x=0  (TM)`

    Vậy pt có một nghiệm : `x=0`

    Bình luận

Viết một bình luận