Cho -1 27/10/2021 Bởi Valerie Cho -1 { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho -1
Ta có : `y=-4( x^2 -x +1) + 3|2x – 1|` `=> y=-(4x^2-4x+4)+3|2x-1|` `=> y=-(4x^2-4x+1)+3|2x-1|-3` `=>y=-(2x-1)^2+3|2x-1|-3` `=>y=-[(2x-1)^2-3|2x-1|+9/4]-3/4` `=>y=-[(2x-1)-3/2]^2-3/4` `=>y≤-3/4` Dấu “=” xảy ra `⇔|2x-1|=3/2` `⇔x=-1/4` Vậy `y_max=-3/4 ⇔ x=-1/4` Bình luận
Đáp án: $GTLN$ $của$ $y$ $là$ $\frac{-3}{4}$ $tại$ $x = \frac{-1}{4}$ Giải thích các bước giải: $với$ $-1<x<1$ $ta$ $có:$ $y = – 4(x² – x + 1) + 3|2x – 1|$ $→y = – (4x² – 4x + 1) – 3 + 3|2x – 1| $ $→ y = – (2x – 1)² + 3|2x – 1| -3 $ $→ y = – (|2x -1|)² + 3|2x – 1|-3$ $→ y = – [(|2x – 1|)² – 3|2x – 1|)-3$ $→ y = – [(|2x-1|)² – 2.|2x-1|.\frac{3}{2} + \frac{9}{4}] – 3 + \frac{9}{4}$ $→y = – (|2x-1| – \frac{3}{2})² – \frac{3}{4}$ $vì$ $(|2x – 1| – \frac{3}{2})² \geq 0$ $→ – (|2x – 1| – \frac{3}{2})² \leq 0$ $→ – (|2x – 1| – \frac{3}{2})² – \frac{3}{4} \leq \frac{-3}{4}$ $→ y \leq \frac{-3}{4}$ $Dấu$ $”=”$ $xảy$ $ra$ $→ |2x – 1| – \frac{3}{2} = 0$ $→ |2x – 1| = \frac{3}{2}$ $→\left[ \begin{array}{l}2x – 1 = \frac{3}{2}\\2x – 1 = \frac{-3}{2}\end{array} \right.→\left[ \begin{array}{l}2x = \frac{5}{2}\\2x = \frac{-1}{2}\end{array} \right.→\left[ \begin{array}{l}x= \frac{5}{4}(k^{0} tmđk)\\x=\frac{-1}{4}(tmđk)\end{array} \right.$ $Vậy$ $GTLN$ $của$ $y$ $là$ $\frac{-3}{4}$ $tại$ $x = \frac{-1}{4}$ Bình luận
Ta có :
`y=-4( x^2 -x +1) + 3|2x – 1|`
`=> y=-(4x^2-4x+4)+3|2x-1|`
`=> y=-(4x^2-4x+1)+3|2x-1|-3`
`=>y=-(2x-1)^2+3|2x-1|-3`
`=>y=-[(2x-1)^2-3|2x-1|+9/4]-3/4`
`=>y=-[(2x-1)-3/2]^2-3/4`
`=>y≤-3/4`
Dấu “=” xảy ra `⇔|2x-1|=3/2`
`⇔x=-1/4`
Vậy `y_max=-3/4 ⇔ x=-1/4`
Đáp án:
$GTLN$ $của$ $y$ $là$ $\frac{-3}{4}$ $tại$ $x = \frac{-1}{4}$
Giải thích các bước giải:
$với$ $-1<x<1$ $ta$ $có:$
$y = – 4(x² – x + 1) + 3|2x – 1|$
$→y = – (4x² – 4x + 1) – 3 + 3|2x – 1| $
$→ y = – (2x – 1)² + 3|2x – 1| -3 $
$→ y = – (|2x -1|)² + 3|2x – 1|-3$
$→ y = – [(|2x – 1|)² – 3|2x – 1|)-3$
$→ y = – [(|2x-1|)² – 2.|2x-1|.\frac{3}{2} + \frac{9}{4}] – 3 + \frac{9}{4}$
$→y = – (|2x-1| – \frac{3}{2})² – \frac{3}{4}$
$vì$ $(|2x – 1| – \frac{3}{2})² \geq 0$
$→ – (|2x – 1| – \frac{3}{2})² \leq 0$
$→ – (|2x – 1| – \frac{3}{2})² – \frac{3}{4} \leq \frac{-3}{4}$
$→ y \leq \frac{-3}{4}$
$Dấu$ $”=”$ $xảy$ $ra$ $→ |2x – 1| – \frac{3}{2} = 0$ $→ |2x – 1| = \frac{3}{2}$
$→\left[ \begin{array}{l}2x – 1 = \frac{3}{2}\\2x – 1 = \frac{-3}{2}\end{array} \right.→\left[ \begin{array}{l}2x = \frac{5}{2}\\2x = \frac{-1}{2}\end{array} \right.→\left[ \begin{array}{l}x= \frac{5}{4}(k^{0} tmđk)\\x=\frac{-1}{4}(tmđk)\end{array} \right.$
$Vậy$ $GTLN$ $của$ $y$ $là$ $\frac{-3}{4}$ $tại$ $x = \frac{-1}{4}$